当定制至关重要时,光学参考腔 (ORC) 系列就是我们的解决方案。您可以从出色的适配、辅助仪器和服务组合中进行选择,并从我们设计多代超稳定激光系统的经验中获益。ORC 系列是法布里-珀罗型腔,其谐振腔垫片由超低膨胀玻璃 (ULE) 制成。腔体安装在密封真空外壳中,具有出色的温度稳定性,可实现低频率漂移。紧凑的设计确保最小的空间需求。ORC-Cubic 可作为 6U、19 英寸机架模块使用。它基于国家物理实验室授权的刚性安装的立方体垫片。ORC-Cylindric 使用由德国联邦物理技术研究院设计的圆柱形垫片,水平安装在四个支撑点上。在这里,机械锁定机制确保了便携性。有各种附加组件和选项可供定制:镜面基底有 ULE 或熔融石英 (FS) 两种,镜面涂层可以是离子束溅射 (IBS) 或晶体 (XTAL),当低热噪声至关重要时,需要后者。高反射涂层适用于很宽的波长范围,也可作为双重或三重高反射镜。输入耦合、PDH 锁定和输出监控模块可以牢固地安装到腔体上,从而省去了运输后的繁琐重新调整。每个系统都在组装过程中经过烘烤。内置的 NTC 和 Peltier 元件可通过真空馈通装置接触,从而允许在热膨胀系数 (CTE) 的零交叉处工作。可根据要求提供 CTE 特性。两种腔体也可不带外壳。
我们通过环形梁研究表面极化子的辐射,该环形梁同轴封闭了一个圆柱形波导,该波导被均匀的介质包围。通过使用绿色二元组,电磁电位以及电磁场在波导的内部和外部。对于圆柱体内外的介电渗透率的一般情况,能量损失的表达是得出的。在与表面极化子辐射相对应的光谱范围内进行了全面分析。对于梁速度的中间值获得了光谱分布中的最高峰。在透明培养基的极限中,辐射表面极化子的光谱是离散的,相应的频率由圆柱波导的特征值方程确定。的数值示例。
它们各有利弊:- 扭转超声波焊接的焊接工具使用寿命较短。如果 JR 高度增加,焊接工具(喇叭/超声波发生器)的设计将变得更加复杂,以保持高可靠性:薄型设计刚度较差,导致焊接效率低下。- 由于焊接元件为纯铝合金,点电阻焊接可能会出现粘连问题。- 激光焊接:很难将激光束聚焦到 JR 内径。一些电池制造商正在研究不同的设计,允许从底部焊接(激光束从底部的外侧击中阴极端子)
建立一个描述具有任意 Atwood 数的冲击加速圆柱形流体层的模型对于揭示 Atwood 数对扰动增长的影响至关重要。最近的模型(J. Fluid Mech.,第 969 卷,2023,第 A6 页)揭示了冲击加速圆柱形流体层不稳定性演化的几种贡献,但由于采用了真空中流体层的薄壳校正和界面耦合效应,其适用性仅限于 Atwood 数绝对值接近于 1 的情况。通过对两个界面分隔三种任意密度流体的圆柱形流体层进行线性稳定性分析,本研究推广了薄壳校正和界面耦合效应,从而将最近的模型扩展到具有任意 Atwood 数的情况。通过直接数值模拟证实了该扩展模型在描述再冲击前冲击加速流体层不稳定性演化的准确性。在验证模拟中,考虑了三种流体层配置,其中外部和中间流体保持不变,内部流体的密度减小。此外,通过使用该模型分析每个贡献,主要阐明了内界面 Atwood 数对扰动增长影响的潜在机制。随着 Atwood 数的减小,由于层内回荡的波更强,Richtmyer-Meshkov 不稳定性的主要贡献增强,导致初始同相界面处的扰动增长减弱,初始反相界面处的扰动增长增强。
摘要:电池电池是电池电池系统的主要组件。取决于制造商,在汽车领域(小袋,棱镜和圆柱形)中使用了三种不同的细胞格式。在过去的三年中,圆柱形细胞在汽车制造商中获得了强烈的相关性和普及,主要是由创新的细胞设计驱动的,例如特斯拉泡沫塑料设计。本文研究了从四个格式(18650,20700,21700和4680)的四个细胞制造商中的19个锂离子圆柱电池。我们旨在系统地捕获设计特征,例如制成品和质量参数,例如制造公差,并普遍描述圆柱形细胞。我们将基本设计和分配的示例单元格识别为它们。此外,考虑到电流和热传输路径,我们还展示了表格设计的全面定义。我们的发现表明Tesla 4680设计是准模式的。另外,我们发现25%的阴极和30%的阳极没有被切换,从而导致了较长的电气和热传输路径。基于CT和验尸分析,我们表明果冻卷可以很好地与阿基米德螺旋形近似。此外,我们比较了地表和果冻卷中心和中心的重量和容量密度,阻抗和加热行为。从通用描述中,我们介绍并讨论着针对果冻卷的格式和设计灵活制造的生产过程。
本研究提出了一种基于源偏置以及圆柱形几何结构中的离散能谱的源方案,用于在 GEANT4 工具包中模拟 μ 子断层扫描。首先,侧面圆柱表面和顶部圆盘充当围绕断层扫描装置的生成表面。然后,生成的 μ 子被引导至目标体积所在的原点。其次,使用从 CRY μ 子发生器提取的 0 到 8 GeV 之间的 80 箱离散能谱来分配进入的 μ 子的动能。因此,目前的方案称为圆柱定向 μ 子发射 (COME)。这种源方案尤其适用于使用侧面 μ 子探测器来利用水平或类水平 μ 子的情况。
本报告是由美国政府某个机构资助的工作报告。美国政府及其任何机构、巴特尔纪念研究所或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,或承担任何法律责任或义务,或保证其使用不会侵犯私有权利。本文中对任何特定商业产品、流程或服务的商品名、商标、制造商或其他方面的引用并不一定构成或暗示美国政府或其任何机构或巴特尔纪念研究所对其的认可、推荐或支持。本文中表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
摘要 在工业应用中,具有精确几何公差的高精度旋转轴通常在齿轮和壳体之间以微米级间隙安装。在大多数这些应用中,动态循环载荷是不可避免的,这会对关键部件的疲劳寿命产生不利影响。在加工过程中确保严格的尺寸公差和同轴度是非常可取的,因为它会影响许多应用中的旋转特性。因此,同轴度误差的控制在旋转轴和高精度机床中起着至关重要的作用。然而,使用高精度加工会大大增加制造成本。因此,一种能够潜在地减少同轴度误差的经济高效的加工工艺具有很高的工业重要性。本研究通过优化参数(切削速度、进给率、切削深度和切削刀具刀尖半径)尝试实现圆柱形加工零件的最小同轴度误差。计划进行实验,即中心复合设计矩阵和统计分析通过应用响应面法确定机器参数对高强度 Al 7075 合金同轴度误差的影响。进给率和切削深度因素对同轴度误差有显著影响。所有加工参数对同轴度误差均表现出非线性影响,这定义了强相互作用因素的影响。通过确定一组加工参数,即应用 Big-Bang 和 Big Crunch 以及 Rao(Rao-1、Rao-2 和 Rao-3)算法,使用推导出的经验方程来最小化同轴度误差。Rao 算法在计算量和解决方案精度方面均优于 Big-Bang 和 Big Crunch 算法。Rao 算法的结果经过实验验证,同轴度误差降低至 1.013 µm,与 CCD 实验相比提高了 72.6%。
重复使用 存放在 White Rose Research Online 中的项目受版权保护,保留所有权利,除非另有说明。您可以下载和/或打印这些项目用于个人学习,或国家版权法允许的其他行为。出版商或其他权利持有人可能允许进一步复制和重复使用全文版本。这由 White Rose Research Online 记录中该项目的许可信息指示。
摘要:发光二极管 (LED) 因其高效的发光效果而越来越多地应用于各种微电子设备。LED 的小型化及其在重量限制内的紧凑型设备集成导致产生过多的热量,而对热量的低效管理可能导致整个系统故障。被动和/或主动散热器用于将热量从系统散发到环境中以提高性能。本研究利用 ANSYS 设计建模器和瞬态热条件来设计和模拟 LED 系统。建模器通过利用有限元法 (FEM) 技术来执行其功能。本研究考虑的 LED 系统由芯片、热界面材料和圆柱形散热器组成。研究中使用的圆柱形散热器 (CHS) 翅片的厚度在 2 毫米到 6 毫米之间,同时确保散热器的质量不超过 100 克。 LED 芯片的输入功率在 4.55 W 和 25.75 W 之间,符合一些原始设备制造商 (OEM) 的要求。进行了网格依赖性研究,以确保结果与实际获得的结果一致。模拟结果表明,额定功率不会影响 CHS 的热阻。此外,热阻随 CHS 翅片厚度的增加而增加。发现散热器的效率随圆柱翅片厚度的增加而增加,计算和模拟热效率之间的精度范围为 84.33% 至 98.80%。显然,如本研究所示,6 毫米厚度的 CHS 翅片比其他 CHS 翅片更高效。