在轨操作(例如维修和组装)被视为未来航天工业的优先事项。模拟在轨相互作用的地面设施是开发和测试太空技术的关键工具。本文介绍了一种使用地面机器人操纵器模拟在轨操作的控制框架。它将用于机器人操纵器笛卡尔运动控制的虚拟正向动力学模型 (VFDM) 与基于 Clohessy Wiltshire (CW) 模型的轨道动力学模拟器 (ODS) 相结合。众所周知,基于 VFDM 的逆运动学 (IK) 解算器比传统 IK 解算器具有更好的运动跟踪、路径精度和解算器收敛性。因此,它为基于轨道模拟的操纵器提供了稳定的笛卡尔运动,即使在奇异或接近奇异的配置下也是如此。该框架在 SnT 的 ZeroG-Lab 机器人设施上通过模拟两种场景进行了测试:自由浮动卫星运动和自由浮动相互作用(碰撞)。结果显示,ODS 指挥的模拟运动与机器人安装的模型执行的运动之间存在保真度。
将有效载荷封装在立方体卫星结构内,通过标准、定义明确的接口进行通信,大大简化了机载实验的开发和测试。客用有效载荷从托管航天器的主总线接收电力、电信和热控制。控制托管航天器方向的能力使有效载荷操作员能够在不同的光照和黑暗条件下进行测试和实验,或将其指向多个轨道上的全球不同区域。发射和运营成本捆绑在标准服务包中,定价方案可预测,不含非经常性成本,降低了在轨操作有效载荷所需的准入门槛。
AFRL 正在支持太空系统司令部和其他机构开发战术响应太空 (TacRS) 概念。AFRL 的努力被称为战术响应太空访问 (TRSA),尽管它不仅涉及响应太空访问,还涉及响应航天器。AFRL 正在充分利用其与行业的 PPP 以及过去和现在的研究工作来建立技术基础,使 TacRS 成为一种按需能力,就像指挥官召唤无人机执行 ISR 或打击任务一样。TRSA 不仅涵盖推进技术,还涵盖实现快速、响应太空访问和在轨操作所需的其他方面。AFRL 与霍尼韦尔合作开发其 HALAS 气象系统,以更好地了解发射场的当地天气情况,从而减少甚至消除天气延误和延误。AFRL 还在研究如何指挥和控制多个商业和政府发射场,以实现在 24 小时内发射命令内的“同时”发射。
空间辐射分析实验 (ESRA) 是洛斯阿拉莫斯国家实验室建造的最新演示和验证任务,重点是测试下一代等离子体和高能粒子传感器。ESRA 有效载荷的主要动机是尽量减少尺寸、重量、功率和成本,同时仍提供必要的任务数据。ESRA 将通过测试和在轨操作来展示这些新仪器,以提高其技术就绪水平,从而支持技术和任务目标的发展。该项目将利用商用现成的 CubeSat 总线以及商用卫星地面网络来降低与传统 DemVal 任务相关的成本和时间表。该系统将与国防部空间测试计划共乘发射,插入地球同步转移轨道,并允许观测地球辐射带。 ESRA 任务由两个科学有效载荷和多个子系统组成:宽视场等离子体光谱仪、高能带电粒子望远镜、高压电源、有效载荷处理器、飞行软件架构和分布式处理器模块。ESRA CubeSat 将测量 GTO 环境中的等离子体和高能带电粒子群,其中离子的能量范围从 ~100 eV 到 ~1000 MeV,电子的能量范围从 100 keV 到 20 MeV。
小型太空机器人有可能通过以更短的时间和更低的成本促进基础设施的在轨组装,从而彻底改变太空探索。如果这样的系统还能够执行在轨维修任务,那么它们的商业吸引力将进一步提高,这符合当前限制太空垃圾和延长已在轨卫星寿命的动力。虽然成功演示了有限数量的能够在轨道上操作的技术,但这些系统仍然很大且是定制的。最近小型卫星技术的激增正在改变太空经济,在不久的将来,缩小太空机器人的尺寸可能成为一种可行的选择,具有许多好处。这一行业范围内的转变意味着一些用于缩小尺寸的太空机器人的技术,例如电源和通信子系统,现在已经存在。然而,在缩小尺寸的太空机器人能够执行有用的任务之前,仍需要克服动态和控制问题。本文首先概述了这些问题,然后分析了缩小系统尺寸对其操作能力的影响。因此,我们提出了最小的可控系统,以便利用现有技术实现小型空间机器人的优势。本文讨论了基础航天器和机械手的尺寸。所提出的设计包括一个安装在 12U 尺寸卫星上的 3 连杆、6 自由度机器人机械手。我们通过模拟评估了这种 12U 空间机器人的可行性,本文提供的深入结果支持了小型空间机器人是可行在轨操作解决方案的假设。2020 COSPAR。由 Elsevier Ltd. 出版。这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。