a 加拿大多伦多大学家庭医生航空集团,加拿大多伦多 b 诺华制药公司,新泽西州东汉诺威 c 加拿大不列颠哥伦比亚大学医学系呼吸医学分部,加拿大不列颠哥伦比亚省温哥华 d 诺华生物医学研究所,马萨诸塞州剑桥 e 荷兰格罗宁根全科医师研究所 f 格罗宁根大学,格罗宁根大学医学中心,GRIAC 研究所,荷兰格罗宁根 g 新加坡观察与实用研究所,新加坡 h 约阿尼纳大学医学院呼吸医学系,希腊约阿尼纳 i 新加坡观察与实用研究所,新加坡 j 阿伯丁大学应用健康科学部学术初级保健中心,英国阿伯丁 k 悉尼大学伍尔科克医学研究所,澳大利亚新南威尔士州悉尼 l 克里特岛大学医学院社会医学系,希腊伊拉克利翁 m肺部和重症监护医学,吉森和马尔堡大学医学中心,马尔堡菲利普斯大学,德国肺脏研究中心 (DZL) 成员,德国马尔堡 n 诺华制药公司,瑞士巴塞尔 本研究的医学写作由诺华制药公司资助。利益冲突:A. Kaplan 是阿斯利康、贝林、勃林格殷格翰、Covis、Griffols、葛兰素史克 (GSK)、默克、辉瑞、诺华、NovoNordisk、Teva 和 Trudel 的医学顾问或演讲者。H. Cao 是诺华制药公司的员工,该公司位于新泽西州东汉诺威。JM FitzGerald 因参加顾问委员会和演讲者职务而从诺华公司获得个人报酬,不列颠哥伦比亚大学从诺华公司获得研究资助。 N. Iannotti 和 E. Yang 是位于马萨诸塞州剑桥的诺华生物医学研究所的员工。JWH Kocks 自述获得阿斯利康、勃林格殷格翰、凯西制药、葛兰素史克、诺华、萌蒂制药和 Teva 的资助、个人费用和非财务支持,并持有全科医师研究所 72.5% 的股份。 K. Kostikas 曾获得阿斯利康、勃林格殷格翰、Chiesi、ELPEN、葛兰素史克、美纳里尼、诺华、NuvoAir 和赛诺菲的资助、个人费用和非财务支持,并且曾是诺华制药公司的员工和股东,直至 2018 年 10 月 31 日。D. Price 是安进、阿斯利康、勃林格殷格翰、Chiesi、Circassia、迈兰、萌迪制药、诺华、再生元制药、赛诺菲、健赞、梯瓦制药和赛默飞世尔的董事会成员,并与安进、阿斯利康、勃林格殷格翰、Chiesi、葛兰素史克、迈兰、萌迪制药、诺华、辉瑞、梯瓦签订了咨询协议
联合学习(FL)包括用于机器学习的分散培训算法的家族[1] - [3],使内部分裂能够在不集中培训数据的情况下协作训练模型。这种方法通过将培训计算分配到边缘来减轻数据中心的计算负担。但是,至关重要的是要注意,尽管联邦学习提供了一个分散的框架,但它可能无法继承客户的隐私。中央服务器收到的更新有可能无意间揭示有关客户培训数据的信息[4],[5]。保护客户对联合学习的隐私的流行策略包括基于差异的隐私(DP)和基于同型加密(HE)方法。DP的想法是在梯度上添加噪音,以保护梯度的保密性[6]。基于DP的学习算法的现有作品包括本地DP(LDP)[7],具有选择性参数更新[8],基于晶格[9]等的DP等。尽管可以直接采用DP,但它具有较弱的隐私保证和潜在准确性损失的缺点。他是一种加密技术,可以在加密数据上执行计算,而无需首先解密。在联邦学习的背景下,同构加密在确保个别参与者数据的隐私方面起着至关重要的作用。由于FL中的梯度的聚集仅涉及添加,因此许多最近的作品[10],[11]提议采用基于Paillier [12]的加性同构加密。某些基于晶格的问题,例如但是,一旦可以使用Shor的量子算法有效地将大整数构成大型整数[13],Paillier的安全性就会损坏。基于晶格的密码学被认为是抗量子的[14] - [16]。
可充电镁(MG)电池是下一代储能系统的有希望的候选者,因为它们的潜在高能密度,内在的安全特征和成本效益。在各种电化学伴侣中,与硫(S)阴极的MG阳极组合成为一种有吸引力的选择,因为它提供了超过3,200 WH l –1的显着理论体积能量密度。然而,由于MG-ION电解质,MG多硫纤维的独特特性和MG金属阳极的表面钝化,MG - S电池的发展正面临着多重挑战。在这篇评论中,总结了MG - S电池系统的效率电解质的最新进展。除了电解质外,我们还讨论了制造新的S阴极复合材料,MG阳极和功能分离器方面取得的进展,重点是它们在解决MG - S系统的关键问题方面的作用。最后,值得指出的是,结合实验研究和理论建模的协作研究可以提供更深入的见解,以了解MG的电池系统的机制并促进其开发。总体而言,讨论了有关S-REDOX反应,多梯性航天飞机问题和降解机制的全面见解,讨论了MG - S电池中的降解机制,这对于创建用于增强MG - S电池总体性能的解决方案至关重要。本评论旨在提供研究的当前状态,以刺激有关促进MG - S电池开发的基本准则的创新思想。
抗生素耐药性危机决定了对抗药性监测的需求和寻找新的抗生素。受监测方案的开发受到了许多阻力因素的多样性的阻碍,而“街道光效应”否认了基于现有数据库发现新型药物的可能性。在这项研究中,我们使用从基于特征的生态学角度观察的高通量环境筛查来解决这些挑战。通过对跨越欧洲的658个表土样品的宏基因组进行深入分析,我们探索了241个原核生物和真菌基因的分布,负责生产具有抗生物性特性和485种抗生素耐药性基因的代谢物。我们分析了这些基因收集的多样性,并在环境梯度上对每个基因的分布进行了建模。我们的分析揭示了编码酶促途径的顺序步骤的几种非平行分布模式,该基因合成了大型抗生素基团,指出了现有数据库中的差距,并提出了发现已知抗生素的新类似物的潜力。我们表明,农业活动引起了微生物抗生素相关机械的大陆规模均匀化,这强调了在景观镶嵌中维持本地生态系统的重要性。基于宏基因组中基因比例与主要预测因子(土壤pH,土地覆盖类型,气候温度和湿度)之间的关系,我们说明了化学结构的性质如何决定跨环境中其合成的基因的分布。有了这种理解,我们提出了一般原则,以促进抗生素的发现,包括主要是新的,建立了抗生素抗性基因的丰富基准,并预测它们的传播。
抽象的白介素6(IL-6,也称为B细胞刺激因子2/干扰素P2)支持粒细胞/巨噬细胞祖体的增殖,并间接支持来自正常小鼠斑球细胞培养的多梯性和胚细胞菌落的形成。我们在这里报告说,IL-3和IL-6协同作用是为了支持培养中鼠多重祖细胞的扩散。在注射5-氟尿嘧啶(150 mg/kg)后4天从小鼠中分离出的脾细胞的总菌落形成时间,在包含这两种淋巴细胞的培养物中相对于由两个因素支持的两种培养物的培养物显着缩短。培养中单个爆炸细胞集菌落的序列观测(映射)表明,在IL-3存在下随机时间间隔后出现了爆炸细胞菌落。单独使用IL-6中的平均外观时间有些延迟,在包含这两个因素的培养物中,相对于在单个淋巴因子的存在下,相对于在存在的培养物中,多曲线爆炸细胞菌落的出现显着加速。在第2天的培养物中-5-氟尿嘧啶骨髓细胞中,IL-6无法支持菌落形成;仅IL-3支持形成一些粒细胞/宏观噬菌体菌落,但是因素的组合起作用协同作用,以产生多曲线和各种其他类型的菌落。在该系统中,IL-LA也与IL-3协同作用,但效果较小,没有看到多片菌落。共同这些结果表明,IL-3和IL-6协同作用以支持造血祖细胞的扩散,并且至少部分效应是由于单个干细胞的GO时期下降而导致的。
图 2 蒙古沙鼠梯形体 (TB) 髓鞘的高分辨率图像。抗神经丝相关抗原 (3A10) (a – c) 和神经丝重链 (NFH) (d – f) 的抗体用作轴突标记物。抗髓鞘碱性蛋白 (MBP) 的抗体显示髓鞘。在出生后第 6 天 (a、a')、出生后第 9 天 (b、b 0 ) 和出生后第 13 天 (c、c 0 ) 从 TB 区域沙鼠大脑冠状振动切片中获取共聚焦单光学图像。在出生后第 7 天 (d、d 0 )、出生后第 10 天 (e、e') 和出生后第 14 天 (f、f 0 ) 从 TB 区域沙鼠大脑矢状振动切片中获取共聚焦单光学切片。 (a – f) 轴突标记物 3A10 (a – c) 和 NFH (d – f) 以红色显示,MBP 免疫反应性以绿色表示。(a' – f 0) 相应的 MBP 染色图像。出生后第 6 天 (a、a') 可以看到短的、有时是点状的髓鞘碎片,其间散布着较长的无髓鞘间隙。少突胶质细胞 (白色星号) 积极产生 MBP,用抗 MBP 抗体标记。在出生后第 7 天的矢状切面中,可以看到 TB 纤维的横截面。一小部分 TB 轴突被 MBP 包围,用抗 MBP 抗体标记。出生后第 9 天 (b、b 0),TB 中的大部分轴突都是髓鞘化的。然而,人们可以很容易地注意到一些轴突没有被髓鞘包裹 (白色箭头,b)。在出生后第 10 天的矢状切面上,大多数轴突被髓鞘包裹,但有些没有(白色箭头,e)。到出生后第 13 天(c,c 0)可以看到髓鞘包裹所有轴突。请注意,髓鞘轴突排列非常紧密,以至于很难勾勒出属于单个轴突的髓鞘。在出生后第 14 天的矢状切面上,TB 区域的所有轴突横截面都被髓鞘包裹。比例尺:20 μ m。
控制器等方面提出了工效学设计要求。 从国外组织来看,国外涉及船舶驾驶室操控界面的标准主要包括:国际海事组织IMO 于2000 年制定的标准《船桥设备和布局的工效学指南》( MSC/ Circ.982 ) [16] ,内容涉及船桥(包括驾驶室)布置、 作业环境、工作站布置、报警、控制界面、信息显示、 交互控制等7 个方面的驾驶室人机界面设计要求。国际海上人命安全公约SOLAS 于2007 年制定的标准《船桥设计、设备布局和程序》( SOLAS V/15 ) [17] , 内容涉及驾驶室功能设计、航海系统及设备设计、布置、船桥程序等,其显着特点是对于驾驶室团队管理作出相关要求,包括船桥程序、船员培训等。 从各个国家来看,美、英等西方国家在军事系 统工效学方面的研究已具有较大的规模,也制定了 一系列军用标准。美国军方军事系统的人机工程学设计准则包括“ 人机工程系统的分析数据” ( MIL.H.sl444 ) [118] , “ 军事系统人机工程学设计准则” ( MIL.STD.1472F ) [19] ,以及1999 年修订的“ 人机工程过程和程序标准” ( MIL.STD.46855A ) [20] 。 MIL-STD-1472 的第一版发布于20 世纪60 年代( 1968 年),在第二次世界大战期间,当时各交战国竞相发展新的高性能武器装备,但由于人机界面设计上的不合理,人难以掌握这些新性能的武器,导致发生了许许多多事故。因此,二次大战结束后,首先美国陆航部队(以后成为美国空军)和美国海军建立了工程心理学实验室,进行了大量的控制器、显示器等的人因素研究,获得了大量的数据,并开始将这些研究成果汇编成手册或制订成各种有关人类工程学的标准或规范。 MIL-STD-1472 就是在这样的时代背景下产生 的。该标准是为军用系统、子系统、设备和设施制定通用人类工程学设计准则,由美国陆军、海军和空军等多个单位评审,美国国防部批准,并强制性要求美国国防部所有单位和机构使用,具有较广泛的影响。 该标准在控制 - 显示综合和控制器章节有针对控制器 通用设计规则的阐述。 美国在船舶人机工程领域的投入力度也较大,不但开展了一系列的船舶人机工程专项试验,而且颁布了多项船舶人机工程设计标准和文件,主要侧重于研究人机环境对船舶的战斗力的影响。其中, ASTMF 1166—88 海军系统装备和设施的人因素工程设计标准是一个通用型标准,涵盖了控制、显示和告警、楼梯和台阶、标识和计算机、工作空间布局等海军设计的所有元素[21 ] 。 英国国防部于2005 年组织建立的船舶SRDs 系统,对船舶人机界面涉及的多方面问题进行梳理和整合,将人机界面研究作为船舶系统设计的一个重要环节,以提高人机界面设计在船舶项目中的优先级别。 英国国防部 2009 年的 MARS 项目计划,将早期人机 界面设计干预纳入到舰艇设计系统中,并委任专业公
2022也是Ganfeng快速发展的一年。国内外有20多个项目同时处于计划或建设阶段,涵盖了资源开发,锂化合物和金属加工和冶炼,锂电池制造以及许多生产场中的回收。在今年,Mahong工厂的第四阶段项目已完成,并投入了试验生产。生产能力继续扩展,并成功完成了各种生产任务。同时,通过技术创新,生产中的脱混合炉渣和浓密的矿石矿石变成了宝藏,从而进一步改善了能量利用率的效率。特殊的锂工厂继续进行研发和改进,并取得了预期的突破。电池级氟化锂的准备实施了节能和减少消费的目标,并在所有新项目中都使用了新工艺。在Ningdu工厂的“零”放电项目的成功实施可有效地减少水资源的消耗和降低的废水排放。Ganfeng回收继续优化其流程并进行自动化升级,同时积极扩大生产和回收范围。有机矿植物研究并改善了丁梯锂和更高质量的N-丁基锂产品的过程,以满足新行业对丁基锂产品的需求,从而扩大了丁基林的应用领域。电池部门也迅速开发。The metal lithium plants placed emphasis on new technology research and development, and developed two pre-lithium technologies ‒ evaporation lithium plat- ing and calendering lithium replenishment, which filled the gap of the Company's anode pre-lithium technology, and developed several lithium alloy series such as a lithium-magnesium alloy and lithi- um-indium alloy, which not only laid the foundation of Ganfeng锂对锂系列合金的研究与开发,但也证明了甘芬·锂有能力研究和开发靠锂电池的岩体合金系列,从而为未来的市场需求提供了有力的保证。除了引入外部投资外,为了整合力量和形式的行业协同作用,甘芬·里纳吉(Ganfeng Lienergy)还分为两个主要部门:消费者电子业务部门和电力存储业务部门。
分数 阅读一本教科书(建议包括以下内容) 4 阅读《The Clerk》的所有 6 个版本或 LCR 的四个版本 3 研究政府的社区权利政策 4 阅读一系列出版物,例如为制定社区计划而准备的出版物 6 书单(此列表并不详尽,也没有任何特定顺序。我们欢迎您建议应该添加哪些书籍以及您认为相关且合适的书籍。) 1. 沙克尔顿之道:伟大的南极探险家的领导力课程,作者:Margot Morrell & Stephanie Capparell 欧内斯特·沙克尔顿爵士被称为“上帝地球上有史以来最伟大的领导者,无与伦比”,因为他拯救了与他一起在南极被困近两年的 27 名男子的生命。今天,公众对这位曾经被遗忘的探险家爱不释手,他的行为使他成为伟大领导力和精湛危机管理的典范。现在,通过轶事、船员的日记和沙克尔顿自己的作品。 2. 伊丽莎白一世,首席执行官 作者:艾伦·阿克塞尔罗德 本书讲述了这位陷入困境的君主如何克服艰巨的障碍,赢得忠诚,并带领英国走向伟大。《伊丽莎白一世,首席执行官》将吸引当今的领导者、现代帝国的缔造者以及历史爱好者。 伊丽莎白的一生对于那些刚刚开始在企业阶梯上攀登的人以及那些已经到达最高层但不想从中滑落的人来说有很多启示。 女王的长期统治提供了以下教训: 培养领导态度和形象,并通过个人活力得到提升 成为有效的教练和导师,善于培育创造力 操纵他人 — 巧妙而合乎道德 了解和预测“敌人” 设定明确的目标并激励他人为之努力 最重要的是,伊丽莎白一世的职业生涯是远见、创造愿景、传达愿景和实现愿景的典范。 3. 蝇王,威廉·戈尔丁 蝇王今天仍然像 1954 年首次出版时一样具有煽动性,它以令人震惊、残酷的人性描绘引发了激烈的辩论。尽管受到评论界的好评,但它在首次出版时基本上被忽视了。然而,它很快成为学生和文学评论家的狂热追捧对象,他们将其与 JD Salinger 的《麦田里的守望者》相提并论,认为它对现代思想和文学的影响。蝇王被称为寓言、寓言、神话、道德故事、戏仿、政治论文,甚至是世界末日的景象,它已经成为一部真正的
摘要 从全球来看,栖息地变化是生物多样性丧失的主要驱动因素之一。过去 150 年来,瑞典也发生了类似的变化,导致当地和景观尺度的栖息地复杂性丧失。与此同时,气候也在发生变化,过去 100 年来气温不断升高。这种气候变化可能会对栖息地及其微气候产生连锁反应。蝙蝠通常被认为是环境变化的良好指标。然而,许多蝙蝠物种在全球范围内正在减少,北欧种群被认为是受气候变化影响最大的。栖息地和气候变化对蝙蝠的影响范围很广,包括觅食栖息地的丧失、栖息地位置的影响、形态变化以及对昆虫猎物的影响。在这篇论文中,我确定了栖息地和气候如何在多个空间和时间尺度上影响瑞典的蝙蝠种群。由于这些驱动因素的复杂性,我们在瑞典的长纬度梯度上采用了多方法方法。为了研究蝙蝠形态变化的驱动因素,我分析了 180 年期间的博物馆标本以及历史地图、土地使用统计数据和温度数据。为了了解当地和景观尺度上的栖息地复杂性如何影响蝙蝠活动,我在一项以森林边界为重点的研究中监测了蝙蝠的声音、采集了猎物数量并测量了微气候。我还利用公民科学项目研究了蝙蝠的饮食以及栖息地选择的当地和景观驱动因素。我发现气候变化对蝙蝠形态没有影响,但两种蝙蝠的颌骨大小随时间而变化,一种蝙蝠的颌骨大小增加,另一种蝙蝠的颌骨大小减少。在微气候方面,湿度是蝙蝠活动的重要驱动因素。至于景观层面栖息地的影响,森林覆盖率影响了翅膀形态,在森林较多的景观中,蝙蝠的翅膀更短、更宽。此外,落叶林面积对蝙蝠活动、栖息地选择和蝙蝠猎物数量有积极影响。在当地规模上,森林结构复杂性对蝙蝠活动很重要,但对它们的昆虫猎物却不重要。我还发现两种最常见的物种(Eptesicus nilssonii 和 Pipistrellus pygmaeus)的饮食重叠性很高。这些发现强调了需要在当地和景观规模上保持和增加落叶林覆盖率以及异质栖息地内结构复杂的森林边界,以满足蝙蝠及其猎物的生态需求并确保它们未来的保护。