F. Tang,Mojdeh Lahoori,H。Nowamooz,S。Rosin-Paumier,F。Masrouri。对土壤压实和热量储存对水平接地热交换器热性能的影响的数值研究。可再生能源,2021,172,pp.740-752。10.1016/j.renene.2021.03.025。hal-04522314
摘要:本文介绍了地热植物的名义条件的设计和操作的同时优化,在该植物的名义条件下,地热流体分为两个流以供应有机的兰金循环(ORC)和区域加热网络(DHN)。还研究了DHN的拓扑结构。使用GAMS软件制定并解决了混合整数非线性编程(MINLP)优化问题,以确定ORC的大小和DHN拓扑。在这项研究中,仅将R-245FA用作ORC工作流体,在ORC中考虑了可选的内部热交换器(IHE),并且DHN中的消费者可以确定或可选。通过最大化年度净利润并最大程度地减少工厂中的充分损失来进行多目标优化。使用目标函数的加权总和用于解决问题。通过改变重量因子,获得了帕累托阵线,并与理想但不可行的解决方案的距离允许选择最佳折衷。根据重量因子观察到四种不同的DHN拓扑。使用合适的标准做出决定,所选的配置对应于最小的利润价值最小的DHN。敏感分析表明,如果地热温度较低,无论重量因素如何,都可以获得独特的DHN拓扑。
托马斯·科尔(Thomas Kohl),大学条约 - 主题晚间热转 - DHBW,21.10.24研究野外能源,Institute Appl。地球科学部。地热研究与水库技术
有机膨胀最终带有水果PGEO将通过Lumut Balai第2单元增加55MW的地热容量,预计于5月25日,这标志着其首次增加了23财年的IPO,并将总安装能力达到728MW。下一步朝着其1GW目标迈出的1GW目标将源自2027年的Hululais单元1和2(110MW)的操作,以及与PLN的共同发电项目(其中已在30MW的Ulubelu宣布了45MW和15MW的Lahendong和Lahendong的Lahendong),以及C.400mw的GreenField Codical of C.400mw。我们预测25-26F的EPS增长+3.3%/ +2.7%,至1.78亿美元/$ 1.83亿美元,假设25财年的4,930GWH, +2.12%的Yoy产生 +2.12%的同期,它是从Lumut Balai的销售中增加的,从而增加了apter septer(vss),从而增加了$ 9 (vs. $ 6.4美分/千瓦时)。 除了Hululais外,所有未来的Greenfield项目都将基于电力销售,我们估计,基于我们从PP No.112/2022的计算,我们将平均C.US C.US在运营的前10年中为9.8美分。 以买入等级和RP1200的TP恢复覆盖范围,我们在PGEO上恢复覆盖范围,并以稳健的增长轨迹和有吸引力的EV/EBITDA估值为6.5倍的25F估值(与区域同行为11.6倍)。 我们的RP1,200的TP源自所有现有项目的DCF评估方法(Kamojang,Lahendong,Ulubelu,Lumut Balai,Karaha)。 我们的TP意味着EV/EBITDA为8.2x/7.8倍,而以目前的股价,PGEO的估值为6.5倍EV/EBITDA。 我们观点的关键风险包括1)较低的可用性/容量因素,以及2)项目时间表中的延迟。 关键财务我们预测25-26F的EPS增长+3.3%/ +2.7%,至1.78亿美元/$ 1.83亿美元,假设25财年的4,930GWH, +2.12%的Yoy产生 +2.12%的同期,它是从Lumut Balai的销售中增加的,从而增加了apter septer(vss),从而增加了$ 9 (vs. $ 6.4美分/千瓦时)。除了Hululais外,所有未来的Greenfield项目都将基于电力销售,我们估计,基于我们从PP No.112/2022的计算,我们将平均C.US C.US在运营的前10年中为9.8美分。以买入等级和RP1200的TP恢复覆盖范围,我们在PGEO上恢复覆盖范围,并以稳健的增长轨迹和有吸引力的EV/EBITDA估值为6.5倍的25F估值(与区域同行为11.6倍)。我们的RP1,200的TP源自所有现有项目的DCF评估方法(Kamojang,Lahendong,Ulubelu,Lumut Balai,Karaha)。我们的TP意味着EV/EBITDA为8.2x/7.8倍,而以目前的股价,PGEO的估值为6.5倍EV/EBITDA。我们观点的关键风险包括1)较低的可用性/容量因素,以及2)项目时间表中的延迟。关键财务
5。自2021年以来,进行了小规模的站点实验,对涉及地热井开挖的现场实验进行了准备(以下是“大规模站点实验”),因为有必要彻底评估诸如诱导地震和CO2的实验的风险,而在诱导的地震中泄漏了一些漏洞,并且在其他方面进行了研究22。目前,正在为实施计划于2025财政年度的小规模现场实验的实施做准备。
地热春季生态系统作为极端栖息地,对其微核群落施加了巨大的环境压力。然而,关于不同栖息地和温度梯度的地热生态系统中微核群落稳定性的现有研究仍然受到限制。在这项研究中,我们将高通量18S rDNA测序与环境因素分析结合使用,以研究泥沙中泥沙中微神经群落和水样在西部层中不同温度梯度的36个地热弹簧中的微神经群落环境变化的共发生模式,组装机制以及对环境变化的反应。结果表明,随着温度的升高,沉积物中微核群落的网络稳定性显着改善,而水社区的稳定性下降。沉积物和水中的微核群落的组装机制主要是由随机过程中的不主要过程驱动的。纬度和经度是影响沉积物社区组成变化的关键因素,而水温和电导率是影响水社区组成的主要环境因素。此外,地热群落网络的稳定性与其对外部干扰的反应密切相关:在相对稳定的环境中,沉积物群落表现出更高的抗扰性抵抗力,而受环境变化(例如水流和降水)影响的水社区表现出更大的动态变异性。这些发现不仅增强了我们对地热弹簧中微核群落的生态适应性的理解,而且还提供了对极端环境中微生物如何应对外部骚扰的宝贵见解。这对于理解微核社区如何在高度动态和压力的环境条件下保持生态稳定尤其重要。
GEA咨询号。 03 TO : ALL QUALIFIED SUPPLIERS OF THE GREEN ENERGY AUCTION PROGRAM DATE : 28 JANUARY 2025 SUBJECT : LIST OF QUALIFIED BIDDERS FOR THE THIRD GREEN ENERGY AUCTION ROUND (GEA-3) Pursuant to the Terms of Reference (TOR) for the third Green Energy Auction Round (GEA-3), the Green Energy Auction – Bids Evaluation and Awards Committee (GEA-BEAC), with the assistance of the Green Energy Auction Committee – Technical Working Group (GEAC-TWG),对合格供应商在2025年1月9日至10日的注册期间提交的注册文件进行了审查。 符合条件的竞标者列表随附以供参考。 根据GEA-3 TOR的第5.1.1条,所有合格的投标人都必须通过电子邮件提交BID保证金的证明,在PDF文件中,通过电子邮件gea.3@doe.gov.ph.ph.ph,直到2025年2月5日下午12:00 pm。 此外,合格的投标人必须在2月8日,直到12nn,每个项目(或每个阶段)提交一(1)个唯一的电子邮件地址(或每个阶段)。 电子招标平台中合格的竞标者要使用的默认密码应发送到提供的唯一电子邮件地址。 为了确保其各自的帐户,所有合格的竞标者都被命令确认包含默认密码的电子邮件,并在登录时更改上述密码。 有关信息和指导Felix William B. Fuentebella副主席,GEA-BEACGEA咨询号。03 TO : ALL QUALIFIED SUPPLIERS OF THE GREEN ENERGY AUCTION PROGRAM DATE : 28 JANUARY 2025 SUBJECT : LIST OF QUALIFIED BIDDERS FOR THE THIRD GREEN ENERGY AUCTION ROUND (GEA-3) Pursuant to the Terms of Reference (TOR) for the third Green Energy Auction Round (GEA-3), the Green Energy Auction – Bids Evaluation and Awards Committee (GEA-BEAC), with the assistance of the Green Energy Auction Committee – Technical Working Group (GEAC-TWG),对合格供应商在2025年1月9日至10日的注册期间提交的注册文件进行了审查。符合条件的竞标者列表随附以供参考。根据GEA-3 TOR的第5.1.1条,所有合格的投标人都必须通过电子邮件提交BID保证金的证明,在PDF文件中,通过电子邮件gea.3@doe.gov.ph.ph.ph,直到2025年2月5日下午12:00 pm。此外,合格的投标人必须在2月8日,直到12nn,每个项目(或每个阶段)提交一(1)个唯一的电子邮件地址(或每个阶段)。电子招标平台中合格的竞标者要使用的默认密码应发送到提供的唯一电子邮件地址。为了确保其各自的帐户,所有合格的竞标者都被命令确认包含默认密码的电子邮件,并在登录时更改上述密码。有关信息和指导Felix William B. Fuentebella副主席,GEA-BEAC
1。摘要本文讨论了加拿大艾伯塔省天鹅山的开拓性共同生产的地热电厂项目的挑战和机遇。该项目利用了高热梯度储层的现有基础设施,其中底部孔温度从110到120摄氏度不等,通过使用二进制有机兰氨基循环(ORC)发电厂和天然气燃烧涡轮机(NGT)的集成生成系统发电。ORC发电厂将地热热和NGT废热转化为电力。该项目的铭牌容量为21 MW,其中4至6 MW源自可再生地热和废热源。这将温室气体排放量减少了398,000吨二氧化碳,至少二十年的工厂运营寿命。该项目证明了将现有的碳氢化合物基础设施重新利用为可持续能源计划的经济可行性。
1 意大利锡耶纳大学生物技术、化学和药学系 R2ES 实验室,53100 锡耶纳,意大利;marialaura.parisi@unisi.it(MLP);tosti@csgi.unifi.it(LT)2 胶体和表面科学中心(CSGI),50019 佛罗伦萨,意大利;barbara.mendecka@unifi.it(BM);daniele.fiaschi@unifi.it(DF);giampaolo.manfrida@unifi.it(GM)3 巴黎高科矿业大学,PSL 大学,观察、影响和能源中心(OIE),06904 Sophia Antipolis Cedex,法国;melanie.douziech@mines-paristech.fr(MD); paula.perez_lopez@mines-paristech.fr (PP-L.) 4 佛罗伦萨大学工业工程系,50135 佛罗伦萨,意大利 5 那不勒斯帕特诺佩大学科学技术系,80133 那不勒斯,意大利 * 通讯地址:sergio.ulgiati@uniparthenope.it (SU); isabelle.blanc@mines-paristech.fr (IB)
