在Bel Younech公社(构成Jbel Moussa生物学和生态杂志)的东部(Tangier,Tetouan,Al Hoceima,NW Morocco)的摘要,沿着14层的Georoad选择了13个地理材料。这些地点的特征是相关的地质多样性,代表结构地质,地层学,沉积学,岩石学,地貌学,水文地质学和水文学。其中一些地质材料也有一个非常有趣的地理文化。已经使用基于最新文献的数值方法来评估了地球多样性站点,该方法旨在减少与任何评估过程相关的主观性。评估涉及科学价值(SV),教育用途的潜力(PEU),旅游使用的潜力(PTU)和降解风险(DR),通过分配了从0到4的分数,使用各种标准对其进行量化。定量评估的结果表明,有8个科学值大于或等于3.5的地点;该值使它们被视为地理材料。PUE和PUT的平均值非常高(3.7和3.5),而降解风险中等(2.03)。获得的价值证明了通过整合可持续发展的基本概念,证明了对贝尔·扬克公社地理材料的价值和保存的必要性。实际上,所有的地理材料都位于14站的地球上;这可以为地理旅游服务,并促进该公社的活动和经济发展。这项工作可用于科学,教育(在地球科学的框架内)和旅游目的。
洞穴的建模在不断发展,经典的建模工具正在为更精确和更实用的新技术所取代,实际上,科学家越来越多地使用3D建模来改善洞穴的表示,在这项研究中,我们使用了激光仪和照明,在3D代表中占据了3D代表的越来越多的位置。他们的简单性有利于记录和建模洞穴的顶形态以及内在的复杂性的详细表示。作为位于摩洛哥省省省的Kef El Baroud洞穴的地貌研究的一部分,进行了两种建模方法,这是一项通过LaserGrammetry和洞穴的照相测量的数字调查。及其顶形形态。这项研究是由二氧化构测距仪的地形调查完成的。还进行了电断层扫描的地球物理贡献。3D陆地激光扫描技术由Leica RTC 345扫描仪进行。这些测量结果使得可以重建副型形态的进化阶段及其与局部地貌学及其结构元素的关系。一项电断层扫描研究与其他测量值结合在一起,不仅可以根据电阻率梯度划定洞穴的壁,而且还可以检测洞穴下可能存在构成含水层的裂缝区域的可能存在。现场测量被整合到数字模型的形态分析中,这允许大量观察结果。调查还可以将结果与反射摄像机和宽角镜进行的摄影镜的结果进行比较,从而使范围的编辑软件及其在范围内启用了我们的精确范围。摄影测量法,这是洞穴的地貌研究的有趣手段。
摘要:士兵作为高效的推土机,在最近关于人类世地貌学的辩论中,可以被视为景观变化的重要地貌驱动因素。由军事活动产生的“极地形态”与一组大小和几何形状各异的人造地貌相对应。它们在第一次世界大战凡尔登战场(法国)尤为常见,该战场是西线最大的消耗战之一。那场战役中的炮击和防御阵地的建设极大地改变了地貌,造成了数以千计的弹坑、掩体和炮位,改变了中、微地形。本文提出了一种创新方法,利用机载 LiDAR 在整个战场上获取的数字地形模型 (DTM),对这些小规模冲突引起的地貌(不包括战壕等线性特征)进行详尽清点。使用 Kohonen 的自组织映射 (SOM) 和分层凝聚聚类 (HAC) 进行形态分析,以量化和分类大量战争地貌。这种组合方法可以绘制超过一百万个地貌,这些地貌可分为八种不同的形状,包括弹坑和各种士兵制造的地貌(即掩体、炮位等)。使用现场观察进行的检测质量评估表明,该算法成功分类了 93% 的弹坑和 74% 的人类建造的地貌。最后,所制作的图像数据库和地图系列将帮助考古学家和林业工作者更好地管理凡尔登历史遗址,该遗址如今被约 10,000 公顷的大森林覆盖。© 2019 John Wiley & Sons, Ltd.
摘要。如今,许多摄影测量测绘方法都使用无人机来检索和记录有关地球上物体的数据。这是因为与租用飞机相比,使用配备 GNSS(全球导航卫星系统)的无人机进行测量非常高效且更便宜,它还可以飞越难以到达的区域并大大缩短时间。罗马尼亚的无人机技术发展仍处于起步阶段,立法框架甚至对小型无人机也施加了一定的限制。因此,为了使用飞机,需要获得罗马尼亚民航局的批准,以及国防部的批准。这样,飞行在距离、高度和面积方面都受到管制。该研究的目的是实现并详细说明通过摄影测量技术(UAS/UAV)生成正射影像图和三维模型的工作流程,这些工作流程可用于各种地形地籍工作或作为叠加分析的主要地理空间数据,用于城市化、农业、空间规划、地貌学等其他各个领域。本文介绍了使用无人机摄影测量数据对阿拉德县 Labaşinţ 地区进行测绘的结果,使用 WingtraOne VTOL 尾随无人机,配备索尼 RX1RII 相机,配备 42.4 兆像素 CMOS 传感器、35 毫米、全画幅和 GNSS 系统。高精度。数据处理的最后阶段包括生成正射影像平面、马赛克、栅格图像、TIN 和 DEM 格式以及生成点云。目前,无人机在地理空间科学领域的应用需求很高,因为与卫星系统相比,无人机操作相对简单,成本相对低廉,尤其是高分辨率图像。使用无人机的好处之一是,它们可以拍摄航空照片,然后对其进行处理以进行测绘,从而可用于支持空间数据的获取。关键词:WingtraOne、Pix4Dmapper、DEM、DTM、DSM、Labasint、领土分析。
摘要。如今,许多摄影测量测绘方法都使用无人机来检索和记录有关地球上物体的数据。这是因为使用配备 GNSS(全球导航卫星系统)的无人机进行测量比租用飞机非常高效且更便宜,它还可以飞越难以到达的区域并大大缩短时间。罗马尼亚的无人机技术发展仍处于起步阶段,立法框架甚至对小型无人机也施加了某些限制。因此,为了使用该飞机,需要获得罗马尼亚民航局的批准,以及国防部的批准。通过这种方式,飞行在距离、高度和面积方面受到监管。本研究的目的是实现和技术详述通过摄影测量技术(UAS/UAV)生成正射影像图和三维模型的工作流程,这些工作流程可用于各种地形地籍工作或作为叠加分析的主要地理空间数据,用于其他各个领域:城市化、农业、空间规划、地貌学等。本文介绍了无人机摄影测量数据在阿拉德县 Labaşinţ 地区测绘中的应用结果,使用 WingtraOne VTOL 尾随无人机,配备索尼 RX1RII 相机,配备 42.4 兆像素 CMOS 传感器、35 毫米、全画幅和 GNSS 系统。精度高。数据处理的最后阶段包括生成正射影像平面、马赛克、栅格图像、TIN 和 DEM 格式以及生成点云。目前,无人机在空间科学领域的应用需求很高,因为与卫星系统相比,无人机操作相对简单,成本相对低廉,尤其是高分辨率图像。使用无人机的好处之一是,它们可以拍摄航空照片,然后对其进行处理以进行测绘,从而可用于支持空间数据的获取。关键词:WingtraOne、Pix4Dmapper、DEM、DTM、DSM、Labasint、领土分析。
环境。直接研究授权的行使包括构建已开展的工作并提出一个可能阐明尚未解答的问题的研究项目。就活动的主题而言,很明显,金属及其在环境分区之间的转移(或动态)问题是我工作的核心。在使用同位素地球化学(与其他技术相结合)16年后,我仍然相信这种方法提供了通过其他方式难以获得的有价值的信息。要确信这一点,只需看看越来越多的介绍同位素测量(尤其是铅的同位素测量)的出版物就足够了;分析技术的出现促进了爆炸,这些技术比古老的 TIMS 更便宜、更快……而论文年份致力于研究沉积信息、地表水和大气颗粒,以了解这些区室之间的传输在埃罗省 (Etang de Thau),论文后期的时间主要致力于土壤、泥炭地和地衣等生物蓄积物的研究,松针或鱼,涉足与考古学直接相关的领域。然而,正是由于方法的多学科性和多样性,这些困难才得以克服,特别是当涉及到相互作用极其复杂、几乎无限的自然环境时。但这个问题最终真的那么重要吗?这需要土壤学、成岩作用、考古学、沉积学、古植物学、形态古生物学、生物学、生态毒理学、兽医学、海洋学、地貌学、化学、放射化学、磁学、数学建模等各个领域的先进知识......不用说,如果我有一些基础知识可以让我或多或少有效地与作为这些学科的专家,我还远未掌握所有的微妙之处和具体知识。在本文档的其余部分中,读者通常很难确定我自己的贡献,因为所提出的研究中不同参与者之间的相互作用非常接近。
摘要:卡里亚·穆尼(Karya Murni)是苏拉威西北部的地区之一,受到构造影响。构造过程对岩石和地质特征的形成具有影响,这些特征有可能发展为地理多样性地点。地质特征作为有抱负的地质公园Gorontalo中的地理多样性地点的发展可以保护有价值的地质特征免于频繁退化。这项研究旨在分析和进行定量评估,以评估Gorontalo Karya Murni的地质多样性。所使用的研究方法是现场观察,实验室分析和地球多样性评估。现场观察包括观察地面,收集岩石样品和测量地质结构。现场观察,以观察大地质评估的各个方面,其中包括科学,教育,旅游和风险退化。实验室分析包括地貌分析,岩石学分析和地质结构数据分析。地球多样性评估使用印度尼西亚地质调查中心评估。结果表明,研究区域的地貌学可以分为四个地貌单元 - 火山山,统治丘陵,喀斯特山和河流平原单位。研究区域的地层学分为四个单元,从始新世早期到全新世 - 安山岩熔岩,火山角砾岩,礁石石灰石和冲积矿床单位。研究区域的地质结构是东北向西北 - 东南部的趋势趋势。研究区域位置的主动断层由Apitalawu正常断层组成。在最近的州,Karya Murni的地理材料通常具有适度的科学价值,低教育和旅游价值以及降级的高风险。研究领域的地质多样性潜力可用于进一步的研究和教育。关键词:地球多样性潜力,安山岩,火山角砾岩,礁石石灰石,正常故障
摘要:在这项研究中,我们对两个土壤层(0-10 cm和0–30 cm; Soc股票10和SOC 10和SOC 30)的土壤有机碳库存(SOC库存)和相关的不确定性进行了全面分析。,我们在不同的机器学习模型中采用了数字土壤图(DSM)方法,包括多元自适应回归花纹(MARS),随机森林(RF),支持向量回归(SVR)和Elastic Net(ENET)。我们的数据集包含来自110个Pro文件的土壤数据,考虑到存在岩石碎片的存在,所有基于散装密度(BD)的所有采样点的SOC库存计算,无论是测量还是估计。作为我们研究的环境协变量,我们使用了环境变量,尤其是从数字高程模型(具有20 m像素分辨率),土地覆盖数据和气候图中得出的地貌学参数。为了评估模型的有效性,我们使用确定的系数评估了他们预测SOC股票10和SOC股票30的能力(R 2)。SOC股票10的结果如下:火星0.39,ENET 0.41,RF 0.69和SVR 0.50。对于SOC库存30,相应的R 2值为:MARS 0.45,ENET 0.48,RF 0.65和SVR 0.62。此外,我们计算了均方根误差(RMSE),平均绝对误差(MAE),偏差和Lin的一致性相关系数(LCCC),以进行进一步评估。使用RF模型的由此产生的SOC库存图显示了SOC股票10的RMSE = 1.35 kg m -2的精度,而SOC库存的RMSE = 3.36 kg m -2的精度。为了绘制SOC库存的空间分布并解决两个土壤层中的不确定性,我们选择了RF模型,因为它的性能更好,如最高R 2和最低的RMSE和MAE所示。为了进一步评估和说明土壤图的精度,我们通过分析了表现最佳的RF模型的50个迭代的标准偏差(SD),进行了不确定性评估和映射。该分析有效地强调了我们土壤图中获得的高精度。不确定性的地图表明,与SOC股票相比,RF模型可以更好地预测SOC股票10。预测SOC股票的正确范围是该方法论的主要局限性。
课程 MSCE:岩土工程的课程计划样本 假设学生背景 下面显示的示例课程计划假设学生至少修过 CEE 3101(土木工程材料)和 CEE 3810(工程师土力学)或同等课程。 要求:至少 30 个学分(3000-4000 级最多 12 个学分;5000 级 18 个学分) 课程作业列表样本 学分 学期 1) CEE 4820 – 基础工程 3 秋季 2) CEE 4830 – 土工合成材料工程 3 春季 3) CEE 5102 – 高级混凝土材料 3 秋季 4) CEE 5810 – 高级土力学 3 秋季 5) CEE 5811 – 土壤行为基础与工程实验室3 春季 6) CEE 5870 – 多孔材料的多物理场 3 按需 7) GE 4860 - 边坡稳定性的计算机方法 3 春季 8) 系统选修课 3 9) 研究生选修课 3 10) 研究生选修课 3 系统选修课(必须至少选修以下一门课程。) CEE 5710 – 建模和仿真应用 3 秋季 CEE 5730 – 概率分析和可靠性 3 秋季 CEE 5740 – 系统识别简介 3 春季 CEE 5760 – 优化方法 3 春季 研究生选修课示例 CEE 4401 – 路面设计 3 秋季 CEE 4850 – 土木工程师岩石工程 3 春季(替代) CEE 5101 – 沥青材料 3 秋季 CEE 5350 – 基础设施生命周期工程 3 春季 CEE 5401 - 高级路面设计 3 春季CEE 5890 – 岩土工程专题 1-3 秋季/春季/夏季 GE 4100 - 地貌学和冰川地质学 3 春季(另类) GE 5250 - 高级计算地球科学 3 春季 MEEM 5160 – 实验应力分析 3 秋季 MSE 4320 – 腐蚀和环境影响 3 秋季 MSE 5140 – 材料的机械行为 3 秋季 免责声明:本课程计划旨在为有意攻读岩土工程专业 MSCE 学位的学生提供样本。本计划可能并不适合所有学生,学生也没有必要遵循此时间表来获得仅需课程的学位。必须考虑学生的具体目标和先前教育,并需要咨询教职员工。咨询
课程清单 总计 57+ 个学分,不包括指导通识教育 核心要求 - A(选择 1,3 个学分) ___ EGGS 100 环境科学 (3) ___ EGGS 105 环境问题与选择 (3) ___ EGGS 140 可持续性科学 (3) 核心要求 - B(选择 1,0 个学分)* ___ EGGS 102 世界文化地理 (3) ___ EGGS 104 世界区域地理 (3) 核心要求 - C(选择 1,3 个学分)** ___ EGGS 100 环境科学 (3) ___ EGGS 101 自然地理 ___ EGGS 105 环境问题与选择 (3) ___ EGGS 140 可持续性科学 (3) ___ EGGS 220 环境地质学 (3) 核心要求 - D(选择 1,0 个学分)* 1,3 个学分) ___ EGGS 108 气候变化 ___ EGGS 218 全球水问题 ___ EGGS 255 气象学 ___ EGGS 259 海洋学 同源要求(0 个学分) ___ CHEM 121 科学化学 1 (4)* 同源选修课(选择 1,4 个学分) ___ BIOL 110 生物学原理 1 (4)* ___ PHYS 208 入门物理学 1 (4) 同源数学(选择 2,3 个学分) ___ EGGS 150 定量方法 (3) ___ MATH 150 微积分基本原理 (3)* ___ MATH 160 微积分 1 (4)* ___ STAT 141 统计学简介 (4)* ___ EGGS 342 地质统计学(3) 专业要求(23 个学分) ___ EGGS 120 物理地质学 (4)* ___ EGGS 130 历史地质学 (4) ___ EGGS 213 土壤科学基础 (3) ___ EGGS 242 测绘和 GIS 基础 (3) ___ EGGS 263 矿物学和岩石学 (4) ___ EGGS 265 地貌学 (3) ___ EGGS 271 水文学基础 (3) ___ EGGS 360 GIS 原理 1 (3) 专业选修课:选择 3 门(9+ 个学分) ___ EGGS 275 测量学简介 (3) ___ EGGS 325 无人机应用 (3) ___ EGGS 353 地质测绘与分析 (3) ___ EGGS 368 沉积学与地层学 (3) ___ EGGS 369 构造地质学 (4) ___ EGGS 413 土壤形态、成因与分类 (4) ___ EGGS 414 土壤生物学、化学与肥力 (4) ___ EGGS 415 水成土壤与湿地划分 (4) ___ EGGS 416 应用土壤科学与土地利用 (4) ___ EGGS 420 流域修复 (3) ___ EGGS 421 环境许可 (3) ___ EGGS 451 沿海环境海洋学 (3) ___ EGGS 455 环境影响评估 (3) ___ EGGS 460 水环境地球化学 (4) ___ EGGS 461 能源与矿产资源 (4) ___ EGGS 470 水文地质学 (3) ___ EGGS 471 应用地表水文学 (3) ___ EGGS 480 地球物理方法 (4) ___ MARSCI ### 任何经批准的海洋科学课程 (3)