在过去的几十年里,加速器被开发和优化为探索亚核粒子研究能量前沿的工具。然而,最近,加速器优化的另一个方面变得更加重要,即高度可靠的操作,以产生大量的粒子碰撞(“粒子工厂”)或光子(光源),为庞大而多样化的用户群体服务。可靠性方面对于光源尤其重要。光源拥有由数千名用户组成的庞大用户群体,这些用户组织成小型独立研究团队,每个研究团队仅使用一小部分光束时间。即使由于频繁的故障和中断导致的轻微运营效率低下也可能导致某些研究团队分配的光束时间完全损失,从而严重扰乱他们的科学计划。出于这些原因,人们越来越重视高度可靠的操作。可靠性通常定义为在预定时间段内提供给用户的光束时间的相对总量。95% 的可靠性被认为是现代光源的可容忍下限。经常报告 98% 左右的可靠性值,这并不是不寻常的成就。这意味着,对于计划的每年 5000 小时的光束时间,由于故障,用户操作可能只会损失 250 小时或更少。假设从故障中完全恢复平均需要两个小时,中断之间的时间必须平均大于 40 小时(假设每天 24 小时和每周 7 天运行)。同步辐射科学已经变得非常复杂,光束的传输不再是可靠性的充分标准。用户需要具有计划的光束能量和几乎恒定的强度、高空间稳定性和所有光束参数在操作模式改变后具有高再现性的光束,例如通过改变波荡器磁铁的场强来改变光子能量。加速器由大量有源组件组成,其中许多组件具有高功耗,必须同时运行才能使光束运行。它们通过复杂的数字控制连接和协调,精确计时通常是正常运行的条件。对于拥有 100,000 个此类组件的设施,任何组件可能仅在运行 4 × 10 6 小时后才会失效。
背景:多发性硬化症(MS)靶神经变性的当前治疗策略。然而,将萎缩量的整合到临床情况下仍然是未满足的需求。目的:比较使用意大利神经图像网络计划(INNI)数据集比较全脑和灰质(GM)萎缩测量方法的方法。研究类型:回顾性(可从Inni获得的数据)。人口:共有466例复发患者 - 汇出MS(平均年龄= 37.3 10岁,323名女性)和279个健康对照(HC;平均年龄= 38.2 13岁,164名女性)。场强/序列:3.0-T,T1加权(自旋回波和梯度回声没有胆道注射)和T2加权自旋回声扫描在基线和1年后(170 ms,48 HC)。评估:使用萎缩归一化(Siena-X/XL;版本5.0.9)的结构图像评估,统计参数映射(SPM-V12);和JIM-V8(英国科尔切斯特市的Xinapse Systems)软件都应用于所有受试者。统计测试:在MS和HC中,我们评估了FSL-SIERA(XL),SPM-V12和JIM-V8之间的类内相关系数(ICC),用于横截面的全脑和GM组织的体积,以及对COHEN的底线的效果,并效应了DRBREAIN的尺寸,并效应了较大的尺寸。在不同的功率水平(最低= 0.7、0.05α水平)下。错误的发现率(Benjamini - Hochberg程序)进行了校正。p值<0.05在统计学上被认为是显着的。SPM-V12和JIM-V8显示横截面GM萎缩的效果最高(Cohen's结果:SPM-V12和JIM-V8显示出与横截面全脑的显着一致性(HC的ICC = 0.93,MS的ICC = 0.84)和GM体积(HC和ICC = 0.66(HC和ICC = 0.90)和GM Attripal(ICC = 0.35)(ICC = 0.35),ICC = 0.35 = 0.35 = 0.35 = 0.35和ICC = 0.35和ICC =0。在Siena-X/XL和SPM-V12(分别为P = 0.19和P = 0.29)和JIM-V8(分别p = 0.21和p = 0.32)的全脑和GM体积之间的比较中发现了一致。
从而大幅节省房地产和基础设施。此外,紧凑性还会降低给定光束强度的光束存储能量,这是高能、高亮度机器中的一个重要问题。最后,超导性也是通过两个复合过程降低加速器功耗并因此降低运行成本的一种手段:通过使其变得更小(上述紧凑性论点),以及通过降低电磁铁单位长度的功率。超导同步加速器的功耗本质上是低温制冷的功耗,它与机器的周长成比例,而与磁铁中的磁场无关。 LHC 的主要技术要点是研发、工业化生产 1232 个超导偶极子(场强为 8.3 T)、400 个超导四极子(梯度为 223 Tm -1 )和数千个其他超导磁体,这些超导磁体用于校正主场误差、调整束流参数和使束流在高亮度下发生碰撞 [3]。所有这些磁体均由工业制造,能够重复产生正确强度和均匀性的场,精度高达 10 -4 。主偶极子(图 1)具有双孔径,具有相等且相反的场,以便沿平行路径弯曲两束反向旋转的质子或离子束。两组相同的线圈组装在一个通用的机械和磁性结构中,并安装在一个低温恒温器内。这种解决方案在横向空间占用方面既紧凑又高效,因为一个孔径的杂散场由磁轭引导,会对相邻孔径的场产生影响。每个孔径中的线圈都用卢瑟福型 Nb-Ti 电缆缠绕,分为两层,电流密度分级,遵循“cos θ”几何形状。当磁体通电时,巨大的电磁力往往会打开结构,而非磁性奥氏体钢的刚性环会对此作出反应,这些环位于磁性钢轭上。整个组件包含在一个奥氏体不锈钢压力容器中,该容器充当氦气外壳。随着磁场的增加,超导体的临界电流会降低,这限制了它们在高场应用中的使用。这严重限制了众所周知的 Nb-Ti 合金在 4.2 K 的正常沸腾氦气中的使用。更先进的超导体,如 Nb 3 Sn
场梯度(见公式 1),这可以通过尖锐的电极几何形状产生。这样,亚微米颗粒(例如聚苯乙烯珠和病毒颗粒)也可以通过 DEP 分离或固定 [4,5]。尽管该现象背后的机制仍然是近期研究和讨论的主题 [6–10],但蛋白质 [11,12]、酶分子 [13] 甚至小染料分子 [14] 也可以通过 DEP 操纵。由于在纳米电极上的固定无需标记并且在几秒内完成 [15,16],DEP 可能成为生产生物传感器的一种首选方法。此外,蛋白质分子可以单个固定,正如对平面纳米电极尖端和 R-藻红蛋白 (RPE) 所展示的那样 [12]。首次尝试生产用于单分子实验的蛋白质纳米阵列时,将牛血清白蛋白 (BSA) 固定在一个由 9 个电极组成的小纳米电极阵列上,电极尖端直径为 30 nm。根据施加的场强,蛋白质分子被永久或暂时固定,但尚未证明可以分离为单个分子 [15]。为了将单个酶或蛋白质分子固定在阵列上,需要直径小于颗粒直径的尖锐电极尖端 [16, 17]。通过反应离子刻蚀在硅基电极阵列的标准互补金属氧化物半导体生产工艺方面取得的最新进展使足够小的电极尖端的生产标准化成为可能:生产出数千个锥形电极的阵列,其最小直径约为 1.5 nm,通过化学机械抛光可以调整到更大的直径 [16]。对于生物传感器、芯片实验室设备和单酶分子实验,不仅要确保可靠的捕获,还要确保所涉及酶的高残留活性。原则上,估算了固定化的BSA 的量[18],并显示了抗RPE 抗体和辣根过氧化物酶 (HRP) 的活性[13, 19]。但无法对固定物的活性进行绝对量化。为了评估DEP 固定化酶阵列的适用性,本研究对仅通过DEP 永久固定的酶分子活性进行了定量测定。选择HRP 作为模型酶。HRP 是单亚基、44 kDa 血红素蛋白,具有已知的三维结构和催化途径以及复杂的糖基化模式[20, 21]。这种酶已被深入研究了几个世纪,由于其可用性、高稳定性以及在比色和荧光测定中的高活性,已成为诊断试剂盒和免疫测定的标准化学品[22]。出于类似的原因,它是单酶分子实验的原理验证中很受欢迎的酶[23–28],并且已经证明在纳米电泳后具有活性。
1。电荷保护定律。库仑定律。电场强度。叠加原理。连续电荷分布的模型。均匀带电环和灯丝的电场强度。2。电场强度向量的通量。高斯定理用于静电场强度矢量。将高斯定理应用于点充电和平面。3。电场电位。点充电的电势。静电场载体与电势之间的关系。泊松方程。均匀带电的球体的潜力。4。电偶极子。点偶极子的场强和静电电势。外部电场中的电偶极子(力,扭矩,势能)。5。电容的概念。具有不同几何配置的电容器的示例。平行板电容器电容的推导。6。磁场B矢量。带有电流的生物萨瓦特 - 拉普拉斯定律的导体的磁场。具有直流电流的有限长度直导体的磁场。7。磁场矢量的循环定理。带有直流电的环中心的磁场。在长螺线管中的磁场表达。电感。8。电动力。DC电路中的功率。9。广义欧姆定律(差异和整体形式)。Joule-Lenz Law(差异和积分形式)。电磁场。麦克斯韦的方程式以整体和差异形式,其物理含义。不同单位系统中的基本电磁量和定律:SI,CGS和Gaussian。10。来自麦克斯韦方程的电磁平面波方程的推导。电磁平面波的横向性质,电场和磁场之间的关系,电场和磁场的相位振荡。11。平面谐波的极化状态。椭圆形,圆形和线性极化。偏振和自然光,MALUS定律,极化程度。12。光的衍射。 huygens-fresner原理:定义和数学表述。 菲涅耳螺旋,菲涅耳区板。 13。 通过圆形孔和圆形屏幕(菲涅耳区,菲涅耳螺旋)衍射14。 在不透明屏幕的直线边缘处的衍射。 cornu螺旋。 15。 fraunhofer衍射。 衍射模式的属性。 16。 光的干扰。 干扰形成,基本关系和干扰场的特征的条件。 干扰条纹的类型。 17。 电磁波的折射。 Snell定律的推导。 总内部反射。 18。 菲涅尔公式。 19。 20。光的衍射。huygens-fresner原理:定义和数学表述。菲涅耳螺旋,菲涅耳区板。13。通过圆形孔和圆形屏幕(菲涅耳区,菲涅耳螺旋)衍射14。在不透明屏幕的直线边缘处的衍射。cornu螺旋。15。fraunhofer衍射。衍射模式的属性。16。光的干扰。干扰形成,基本关系和干扰场的特征的条件。干扰条纹的类型。17。电磁波的折射。Snell定律的推导。总内部反射。18。菲涅尔公式。19。20。在反射和折射过程中电磁波极化。电磁表面波。使用菲雷斯公式的应用:布鲁斯特定律。在两个介质边界处电磁波的相位关系。光的分散。频率和空间分散。频率分散的电子理论。频率频率依赖性。在分散介质中电磁波包的传播。组速度。瑞利公式。21。培养基的非线性极化。 非线性光学现象(频率的谐波产生,加法和减法,自我关注,刺激散射)。 22。 电磁波在介电波导中传播的特征。 23。 光学平面波导。 介绍波导模式。 24。 光纤。 纤维结构。 光纤中的光传播。 25。 激光的分类(类型)。 各种类型激光器的特征。 激光辐射的主要特征及其评估方法。 26。 半导体中的吸收和光辐射的产生。 发光二极管。 最简单的半导体激光器的设计和操作。 27。 光子晶体。 使用光子晶体用于信息传输,存储和处理。 光子晶体中带结构的形成。培养基的非线性极化。非线性光学现象(频率的谐波产生,加法和减法,自我关注,刺激散射)。22。电磁波在介电波导中传播的特征。23。光学平面波导。介绍波导模式。24。光纤。纤维结构。光纤中的光传播。25。激光的分类(类型)。各种类型激光器的特征。激光辐射的主要特征及其评估方法。26。半导体中的吸收和光辐射的产生。发光二极管。最简单的半导体激光器的设计和操作。27。光子晶体。使用光子晶体用于信息传输,存储和处理。光子晶体中带结构的形成。