为了提高航空目标监视雷达的监视效果,本文对传统滤波算法进行了改进,并基于改进滤波算法构建了ADS-B航空目标监视雷达通道优化系统。此外,本文通过算法改进保证状态协方差的正定或半正定性,采用均方根体积卡尔曼滤波器避免矩阵非正定性导致的滤波器发散或跟踪中断;交互式多模型的滤波原理是采用多个滤波器并行处理,通过调整调整算法中的一步预测协方差来实现自适应调整算法残差。此外,本文结合实际需求,构建了ADS-B航空目标监视雷达通道优化的系统功能结构,并采用软件工程的方法进行需求建模和分析。最后,本文设计实验对系统性能进行验证。研究结果表明,本文构建的系统性能满足实际需求。
随着连接到功率系统的双重喂养发电机(DFIG)的扩大量表,无法忽略系统继电器保护对系统中继电流的影响。设置和配置继电器保护将受到不精确的短路电流计算的影响。但是,一些现有的研究仅考虑输入是撬棍,而转子激发被阻塞的条件。中国的新网络标准需要DFIG的输出反应性支持电流,并将改变短路电流的特性。为了解决此问题,根据分析DFIG的瞬态等效势的特征,提供了具有不间断激发的DFIG的瞬态模型。基于频道链接的不间断变化的特征以及新的网格标准反应性支持电流的要求,提出了带有不间断激发的DFIG的短路电流计算方法。基于实时数字模拟器(RTD),这是一个建立了包含DFIG转换器实际控制单元的数字分析实验平台,验证了拟议的短路电流均方根(RMS)值计算方法。
抽象的人工神经网络(ANN)是一种人工智能方法的方法,为复杂过程提供了有效的预性模型。开发了三种经过反向传播算法训练的独立ANN模型,以预测EF的化学氧需求(COD),悬浮固体(SS)和曝气罐混合酒悬浮固体(MLSS)浓度的Ankara Central Wastewater处理厂。通过对模型的训练和测试进行多个步骤来确定ANN模型的适当体系结构。ANN模型产生了令人满意的预测。均方根误差,平均绝对误差和平均绝对百分比误差的结果为3.23、2.41 mg/l,COD为5.03%; SS的1.59、1.21 mg/L和17.10%; MLSS分别为52.51、44.91 mg/L和3.77%,表明可以充分使用开发的模型。总体上还证实了ANN建模方法可能具有巨大的模拟,精确的性能预测和废水处理厂的过程控制的实施潜力。
摘要在这项研究中,测得的气象数据,经验模型用于估计尼日利亚奥韦利的全球太阳辐射。使用Angstrom和Page的线性回归模型,尼日利亚OWERRI的相对阳光持续时间,相对湿度和最高温度与全局太阳辐射数据相关。产生了其他多个线性回归模型,以检查全球接收到的太阳能与其他气候因素(例如最高温度和相对湿度)之间的关系。阿布贾的尼日利亚气候机构(NIMET)为2011年至2021年之间的11年期间提供了气候特征。四个统计误差指标 - 均值偏差误差(MBE),均方根误差(RMSE),平均百分比误差(MPE)和T-Stat-用于验证数据的统计有效性。尽管某些模型比其他模型更加强烈,但结果表明,使用已建立的模型,预测的全球太阳辐射与测得的平均全球太阳辐射之间存在牢固的关系。基于T统计结果,城市的最佳经验方程为
应对保险行业股市的非线性,不稳定和复杂性所带来的挑战,我们提出了一种增强的生成性对抗性神经网络的股票预测模型,称为Cal-Wgan-GP。该模型的发电机结合了CNN-BILSTM模型等组件和一种自我发项机制,用于生成股票收盘价的精确预测。包括多层卷积神经网络组成的歧视者的任务是区分发电机产生的股票关闭价格和实际股票收盘价。选择了该模型的概括能力,中国Ping An,中国生活,新华社保险和太平洋保险的库存数据。在数据集构建过程中,相关功能(包括技术指标)都合并为促进该模型,以更好地学习隐藏的数据信息。实验结果表明,Cal-Wgan-GP超过四个评估指标的基线模型:平均平方误差(MSE),均方根平方误差(RMSE),平均绝对误差(MAE)和R-squared(R2),可实现最高的数据拟合程度。
摘要 - 在机器人运动过程中以不同速度识别基础表面对于安全有效的机器人导航很重要。这项工作旨在通过在每脚下方固定的力传感器来识别多个室内表面,同时以不同的速度导航,从而增强了双子机器人的感知能力。通过将实时多对象支持向量机(SVM)与有效的时域功能相结合,提出了一种机器人的准确但成本较固的表面标识系统。在这种情况下,研究了四个有希望的手工制作的时域特征,其中均方根(RMS)功能被证明超过了其他三个功能。可以通过分别以两个不同的步行速度应用RMS来实现十倍SVM交叉验证中95.99%和98.16%的平均平均精度(地图)。具有较高的计算效率可以实现高分类精度,因此可以在诸如Arduino或Jetson Nano之类的低成本平台上进行系统部署,这使我们的方法适合在各种步行速度之间进行广泛应用。
背景:等待时间会影响患者的满意度、治疗效果以及患者接受的护理效率。心理健康领域的等待时间预测是一项复杂的任务,它受到预测门诊患者所需治疗次数的难度、高失约率以及使用团体治疗的可能性的影响。如果输入数据的效用较低,等待时间分析的任务就会变得更具挑战性,这种情况发生在通过删除直接和准标识符对数据进行高度去识别化时。目标:本研究的第一个目标是开发机器学习模型,利用实时数据预测精神病门诊患者从转诊到第一次预约的等待时间。第二个目标是利用系统知识在输入数据高度去识别化的情况下提高这些预测模型的性能。第三个目标是确定导致长时间等待的因素,第四个目标是建立这些模型,使它们实用且易于实施(因此对护理提供者有吸引力)。方法:我们分析了加拿大安大略海岸精神卫生科学中心 8 家门诊诊所的回顾性高度去识别化管理数据,使用 6 种机器学习方法来预测新门诊患者的首次预约等待时间。我们使用系统知识来缓解数据低效用的问题。数据包括 4187 名患者,他们通过 30,342 次预约接受了治疗。结果:不同类型的精神卫生诊所的平均等待时间差异很大。超过一半的诊所的平均等待时间超过 3 个月。诊所预约的次数和失约率差异很大。尽管存在这些差异,但随机森林方法为 8 家诊所中的 4 家提供了最小均方根误差值,为其他 4 家诊所提供了第二小均方根误差。利用系统知识提高了高度去识别化数据的效用,并提高了模型的预测能力。结论:随机森林方法通过系统知识得到增强,为新门诊患者提供了可靠的等待时间预测,尽管高度去识别的输入数据的效用很低,而且不同诊所和患者类型的等待时间差异很大。优先系统被确定为导致等待时间过长的一个因素,并建议使用快速通道系统作为潜在解决方案。
AI 人工智能 ANN 人工神经网络 ASA 应用科学协会 ATM 应用技术与管理 BEP 反向误差传播 BFHYDRO 边界拟合流体动力学模型 CRADA 合作研究与开发协议 DSS 决策支持系统 EFDC 环境流体动力学规范 EIS 环境影响声明 FCFWRU 佛罗里达州鱼类与野生动物合作单位 GaEPD 佐治亚州环境保护部 GPA 佐治亚州港务局 GUI 图形用户界面 LMS Lawler、Matusky 和 Skelly ME 平均误差 MLP 多层感知器 MSE 均方误差 M2M 模型到沼泽应用 NWIS 国家水信息系统 OLS 普通最小二乘法 PME 百分比模型误差 psu 实用盐度单位 Q 流量 RMSE 均方根误差 R 2 判定系数 SISO 单输入单输出 SNWR 萨凡纳国家野生动物保护区 SSE 误差平方和 SSR 状态空间重建 USACOE 美国陆军工程兵团 USFW 美国鱼类与野生动物管理局 USGS 美国地质调查局 WASP7 水资源评估与模拟程序 - 第 7 版 WES 水道美国陆军工程兵团实验站 WL 水位 XWL 潮汐范围
残骸重建和一般紧固件装配过程。在一项关于航空工业点云配准的研究中,孙等[6,7]利用三维点云和测量技术开发了一套拼接飞机残骸的系统。结果表明,其粗配准精度为0.6毫米,可接受的配准精度为0.2毫米。王等[8]提出了一种用于飞机点云配准的通用密度不变框架。结果表明,与其他研究[9-11]相比,他们的方法具有更好的精度(0.6毫米——1.0毫米),以均方根误差(RMSE)评估。虽然精度有所提高,但所提出的方法适用于整个扫描飞机,而不是特定的部件。徐等[12]提出了一种紧固件装配的配准方法,其中利用局部几何特征和迭代最近点(ICP)算法。该配准方法用于扫描数据和 CAD 模型之间。结果表明,与单独使用 ICP 算法相比,所提出的方法具有更好的效率。但是,所提出的注册方法的不确定性并未披露。
糖尿病是一种慢性代谢紊乱,其特征是血糖升高,对健康造成重大风险,例如心血管疾病以及神经、肾脏和眼睛损伤。有效管理血糖对于糖尿病患者来说至关重要,可以减轻这些风险。本研究介绍了 Glu-Ensemble,这是一种深度学习框架,旨在为 2 型糖尿病患者提供精确的血糖预测。与其他预测模型不同,Glu-Ensemble 解决了与小样本量、数据质量问题、对严格统计假设的依赖以及模型复杂性相关的挑战。它通过利用更大的数据集来提高预测准确性和模型通用性,并减少许多预测模型固有的偏差。与患者特定模型相比,该框架的统一方法消除了初始校准时间的需要,有助于立即为新患者预测血糖。所得结果表明,Glu-Ensemble 在准确性方面超越了传统方法,以均方根误差、平均绝对误差和误差网格分析来衡量。 Glu-Ensemble 框架成为预测 2 型糖尿病患者血糖水平的有前途的工具,值得在临床环境中进一步研究其实际应用。