摘要:过去十年,电动汽车 (EV) 的需求不断增长,欧盟委员会最近出台的法规规定从 2035 年起只允许电动汽车上路,因此有必要设计一个经济高效且可持续的电动汽车充电站 (CS)。充电站面临的一个关键挑战是匹配波动电源并满足峰值负载需求。本文的总体目标是优化电动汽车充电站混合储能系统 (HESS) 的充电调度,同时最大限度地提高光伏电力利用率并降低电网能源成本。该目标是通过使用不同的深度学习 (DL) 算法(例如循环神经网络 (RNN) 和长短期记忆 (LSTM))预测光伏电力和负载需求来实现的。然后,采用预测数据设计调度算法,确定 HESS 的最佳充电时间段。研究结果证明了所提方法的有效性,实时光伏电力预测的均方根误差 (RMSE) 为 5.78%,实时负荷需求预测的均方根误差 (RMSE) 为 9.70%。此外,所提出的调度算法可将电网总能源成本降低 12.13%。
通过提出一个新模型,可以计算出器件电流均方根和平均电流以及电感/变压器电流均方根和峰值的方程,从而提高双向双有源桥 (DAB) 直流-直流转换器的效率。这些方程有助于预测器件和无源元件中的损耗,并有助于转换器设计。在考虑缓冲电容器对 DAB 转换器的影响的同时,还分析了降压和升压模式下的零电压开关 (ZVS) 边界。所提出的模型可用于预测任何所需工作点的转换器效率。新模型可作为 DAB 硬件设计(器件和无源元件选择)、软开关工作范围估计和设计阶段性能预测的重要教学兼研究工具。DAB 直流-直流转换器的运行已通过大量模拟验证。基于所提出的模型设计了一个 DAB 转换器原型,并用于航空航天储能应用。实验结果验证了新模型在 7 kW、390/180 V、20 kHz 转换器运行和 ZVS 边界运行中的有效性。
背景与目标:精细地形信息是详细洪水模拟和制图的关键输入参数。本研究旨在比较使用光检测和测距以及干涉合成孔径雷达系统的不同分辨率数字高程数据集开发的洪水模型的精度统计数据。方法:本研究应用地理信息系统中可用的水文工程中心-水文建模系统和水文工程中心-河流分析系统模型来模拟和绘制 Maapag 流域的洪水灾害。使用混淆误差矩阵、f 测量值和均方根误差统计数据测试了模型的有效性和精度。结果:结果表明,使用光检测和测距数据集,模型的精度为 88%、0.61 和 0.41;而使用干涉合成孔径雷达数据集,模型的精度分别为 76%、f 测量值和均方根误差。结论:使用光探测和测距数据集开发的模型比使用干涉合成孔径雷达开发的模型精度更高。然而,考虑到模型实施成本和较小的精度残差,后者可以作为前者的替代方案用于洪水模拟和测绘。因此,洪水建模者,特别是来自地方当局的洪水建模者更喜欢使用较粗的数据集来优化洪水模拟和测绘工作的预算。
不均匀对比度评分 (ICR) 优化 WM 段内的全局标准偏差,并通过最小问题对比度进行缩放;从 A+(质量优秀到 F 不可接受/质量失败)评分 均方根分辨率 (RES) 体素大小的均方根值;从 A+(质量优秀到 F 不可接受/质量失败)评分 加权平均图像质量评分 (IQR)
下图 1 显示,当不使用地球方向参数 (EOP) 信息时,与巴黎天文台的一致性非常好 —— 均方根约为 26 微弧度,1 西格玛。为了获得这一结果,选择了 2009 年的数百个随机时期,并获取并比较了 USNO 和 PO 变换矩阵。我们在巴黎天文台的同事怀疑差异是由于 PO 使用的软件对进动率有不同的结果,而 PO 正计划更新其软件。一旦获得这些变化和其他可能的信息,将重新进行比较。
背景与目标:精细地形信息是详细洪水模拟和制图的关键输入参数。本研究旨在比较使用光检测和测距以及干涉合成孔径雷达系统的不同分辨率数字高程数据集开发的洪水模型的精度统计数据。方法:本研究应用地理信息系统中可用的水文工程中心-水文建模系统和水文工程中心-河流分析系统模型来模拟和绘制 Maapag 流域的洪水灾害。使用混淆误差矩阵、f 测量值和均方根误差统计数据测试了模型的有效性和精度。结果:结果表明,使用光检测和测距数据集,模型的精度为 88%、0.61 和 0.41;而使用干涉合成孔径雷达数据集,模型的精度分别为 76%、f 测量值和均方根误差。结论:使用光探测和测距数据集开发的模型比使用干涉合成孔径雷达开发的模型精度更高。然而,考虑到模型实施成本和较小的精度残差,后者可以作为前者的替代方案用于洪水模拟和测绘。因此,洪水建模者,特别是来自地方当局的洪水建模者更喜欢使用更粗略的数据集来优化洪水模拟和测绘工作的预算。
背景与目标:精细地形信息是详细洪水模拟和制图的关键输入参数。本研究旨在比较使用光检测和测距以及干涉合成孔径雷达系统的不同分辨率数字高程数据集开发的洪水模型的精度统计数据。方法:本研究应用地理信息系统中可用的水文工程中心-水文建模系统和水文工程中心-河流分析系统模型来模拟和绘制 Maapag 流域的洪水灾害。使用混淆误差矩阵、f 测量值和均方根误差统计数据测试了模型的有效性和精度。结果:结果表明,使用光检测和测距数据集,模型的精度为 88%、0.61 和 0.41;而使用干涉合成孔径雷达数据集,模型的精度分别为 76%、f 测量值和均方根误差。结论:使用光探测和测距数据集开发的模型比使用干涉合成孔径雷达开发的模型精度更高。然而,考虑到模型实施成本和较小的精度残差,后者可以作为前者的替代方案用于洪水模拟和测绘。因此,洪水建模者,特别是来自地方当局的洪水建模者更喜欢使用较粗的数据集来优化洪水模拟和测绘工作的预算。
背景与目标:精细地形信息是详细洪水模拟和制图的关键输入参数。本研究旨在比较使用光检测和测距以及干涉合成孔径雷达系统的不同分辨率数字高程数据集开发的洪水模型的精度统计数据。方法:本研究应用地理信息系统中可用的水文工程中心-水文建模系统和水文工程中心-河流分析系统模型来模拟和绘制 Maapag 流域的洪水灾害。使用混淆误差矩阵、f 测量值和均方根误差统计数据测试了模型的有效性和精度。结果:结果表明,使用光检测和测距数据集,模型的精度为 88%、0.61 和 0.41;而使用干涉合成孔径雷达数据集,模型的精度分别为 76%、f 测量值和均方根误差。结论:使用光探测和测距数据集开发的模型比使用干涉合成孔径雷达开发的模型精度更高。然而,考虑到模型实施成本和较小的精度残差,后者可以作为前者的替代方案用于洪水模拟和测绘。因此,洪水建模者,特别是来自地方当局的洪水建模者更喜欢使用较粗的数据集来优化洪水模拟和测绘工作的预算。
摘要目的:这项研究的目的是在硅QSAR-神经网络模型中开发出强大的外部预测性,用于预测药物的血浆蛋白结合。该模型旨在通过减少化学合成和广泛的实验室测试的需求来增强药物发现过程。方法:使用277种药物的数据集来开发QSAR神经网络模型。使用滤波器方法构建模型,以选择55个分子描述符。通过预测平方相关系数Q2和均方根误差(RMSE)评估了验证集的外部精度。结果:开发的QSAR神经网络模型显示出鲁棒性和良好的适用性域。验证集的外部准确性很高,预测平方相关系数Q2为0.966,均方根误差(RMSE)为0.063。相对,该模型的表现优于文献中先前发布的模型。结论:该研究成功地开发了一种高级QSAR神经网络模型,能够预测人类血浆中277种药物的血浆结合。该模型的准确性和鲁棒性使其成为药物发现中的宝贵工具,有可能减少对资源密集型化学合成和实验室测试的需求。
摘要本文提出了一种基于遗传编程(GP)的新方法,以得出描述电池末端电压的瞬时演化的行为模型。这些模型在分析上将电池电压与其充电状态,充电/放电率和温度联系起来。与流行的基于等效电路的模型相比,主要优点之一是显着减少了生产识别模型参数所需的实验数据集的努力。GP生成了一个最佳的“候选”分析模型的家族,每个家族都与量化诸如简单性和准确性之类的性能指标的合适指标相关联。考虑到在现实的工作条件下,该方法用于描述磷酸锂(LifePO4或LFP)电池的短暂放电阶段,考虑到付费量在20%至80%之间,排放率在0.25C和1C之间,以及在5°C到35°C的范围内的温度之间的排放率在5°C到35°C的范围内可以提供不同的解决方案。选择两个模型并根据实验结果进行验证。所选模型在分析范围内保证了相对均方根误差(分别为0.31%和0.22%)的相对均方根误差(分别为0.31%和0.22%)。