我们提出了一个新的机器学习基准,用于阅读任务分类,目的是在计算语言处理与认知神经科学之间的相交中推进脑电图和眼睛追踪研究。基准任务由一个跨主体分类组成,以区分两个阅读范式:正常阅读和特定于任务的读数。基准的数据基于苏黎世的认知语言处理语料库(ZUCO 2.0),该语料库提供了同时引人注目的视线和来自英语句子的自然阅读的EEG信号。培训数据集已公开可用,我们提出了新记录的隐藏测试集。我们为此任务提供多种可靠的基线方法,并讨论未来的改进。我们发布代码,并提供易于使用的界面,以使用随附的公共排行榜:www.zuco-benchmark.com评估新方法。
建议采取的行动:环境委员会和公用事业委员会建议采用法令01- O-25,以创建公平的社区主导的脱碳方法。建议采取的行动:环境委员会和公用事业委员会建议采用法令01- O-25,以创建公平的社区主导的脱碳方法。建议采取的行动:环境委员会和公用事业委员会建议采用法令01- O-25,以创建公平的社区主导的脱碳方法。鲤鱼:市政业务,建筑效率,可再生能源,弹性法规,实施,问责制和合伙企业:市政运营,建筑效率,可再生能源,可再生能源,弹性法规,实施,问责制,责任及合伙企业
我们对一项名为动力电池检测(PBD)的新任务进行了全面的研究,该任务旨在从 X 射线图像中定位密集的阴极和阳极板端点,以评估动力电池的质量。现有制造商通常依靠人眼观察来完成 PBD,这使得很难平衡检测的准确性和效率。为了解决这个问题并让更多人关注这个有意义的任务,我们首先精心收集了一个称为 X 射线 PBD 的数据集,该数据集包含从 5 家制造商的数千个动力电池中选择的 1,500 张不同的 X 射线图像,具有 7 种不同的视觉干扰。然后,我们提出了一种基于分割的新型 PBD 解决方案,称为多维协作网络(MDCNet)。借助线和计数预测器,可以在语义和细节方面改进点分割分支的表示。此外,我们设计了一种有效的距离自适应掩模生成策略,可以缓解由板分布密度不一致引起的视觉挑战,从而为 MDCNet 提供稳定的监督。无需任何花哨的修饰,我们基于分割的 MDCNet 始终优于其他各种角点检测、人群计数和基于一般/微小物体检测的解决方案,使其成为有助于促进 PBD 未来研究的强大基础。最后,我们分享了一些潜在的困难和未来研究的工作。源代码和数据集将在 X-ray PBD 上公开提供。
零噪声外推 (ZNE) 是一种量子经典混合技术。它运行噪声水平不断增加的量子电路,提取每个电路的期望值,然后使用经典拟合外推无噪声环境中的理想期望值。在 Mitiq 的 ZNE 实现中,有两个相关的经典变量:(1) 用于查找 y 截距(理想期望值)的外推或拟合类型和 (2) 噪声缩放值,它们决定了噪声在运行的每个附加电路中如何增长 [3]。
doyensec进行了三个流行的软件组成分析(SCA)工具(Semgrep,Snyk和Displyabot)的并排比较,以评估其能力,以正确地确定应用程序的第三方库,具有已知漏洞是否在该应用程序中确实引入了可利用的条件。这包括确认不仅包括脆弱的库版本,而且还包括公开披露中所述实际使用的脆弱功能或配置。需要高度准确性,以减少误报的总数,从而减少专业人员所需的整体分式分三名努力。通过手动分析,我们测量了真实和误报,并确定了安全团队来调查工具发现所需的努力水平。
在这项工作中,我们证明,由于现有评估协议和数据集中的不足,因此有必要重新审视并全面研究Mul-timodal零射击学习(MZSL)问题问题。具体来说,我们解决了MZSL方法面临的两个主要挑战。 (1)既定基线的情况通常是无与伦比的,而且有时甚至是有缺陷的,因为现有的评估数据集通常与培训数据集有一些重叠,因此违反了零照片范式; (2)大多数现有的方法都偏向可见的类,这在对可见和看不见的类别进行评估时会大大降低性能。为了应对这些挑战,我们首先引入了一个新的多模式数据集,用于零照片评估,称为MZSL-50,其中有4462个视频来自50个广泛多元化的类别,并且与培训数据没有重叠。此外,我们提出了一种新型的多模式零射击变压器(MZST)体系结构,该体系结构利用了吸引瓶颈进行多模式融合。我们的模型可以直接预测语义表示,并且在将偏见降低到可见的类别方面表现出色。我们进行了广泛的消融研究,并在三个基准数据集和我们的新型MZSL-50数据集上实现最先进的结果。具体来说,我们提高了传统的MZSL绩效2。1%,9。81%和8。 vgg-sound,UCF-101和ActivityNet的68%。 最后,我们希望引入MZSL-50数据集将促进对社区中多模式零射击的深入研究。 181%和8。vgg-sound,UCF-101和ActivityNet的68%。最后,我们希望引入MZSL-50数据集将促进对社区中多模式零射击的深入研究。1
Vector Institute)、Vijay Janapa Reddi(哈佛大学)、G Anthony Reina(在英特尔任职期间做出贡献)、
■ 客户可以使用 CSP 时间表和 CRM 来了解其自身实施计划的计划变更。● 在 POA&M 管理流程和/或下一次年度评估(如适用)期间,评估修订版 4 到修订版 5 过渡计划的实施情况。修订版 5 控制措施的实施必须在下一次年度评估之前完成,以支持控制措施实施的测试。
多年来,单板计算机 (SBC) 领域的发展一直在不断加快。它们在计算性能和功耗之间实现了良好的平衡,这通常是移动平台所必需的,例如用于高级驾驶辅助系统 (ADAS) 和自动驾驶 (AD) 的车辆应用。然而,对更强大、更高效的 SBC 的需求日益增长,这些 SBC 可以实时运行功耗密集型深度神经网络 (DNN),还可以满足必要的功能安全要求,例如汽车安全完整性等级 (ASIL)。ZF 正在开发“ProAI”,主要用于运行强大而高效的应用程序,例如多任务 DNN,此外,它还具有 AD 所需的安全认证。在这项工作中,我们基于功耗密集型多任务 DNN 架构 Multitask-CenterNet,就 FPS 和功率效率等性能指标比较和讨论了最先进的 SBC。作为一款汽车超级计算机,ProAI 实现了性能和效率的完美结合,其每瓦 FPS 数量几乎是现代工作站笔记本电脑的两倍,几乎是 Jetson Nano 的四倍。此外,根据基准测试期间的 CPU/GPU 利用率,还显示 ProAI 上仍有剩余电量用于执行进一步更复杂的任务。
