几何声学(GA)建模技术假设表面相对于感兴趣的波长较大。对于给定场景,从业者通常会创建一个具有大而平坦表面的 3D 模型,以满足很宽频率范围内的假设。这种几何近似会导致模拟声场的空间分布出现误差,因为会影响反射和散射行为的几何细节被忽略了。为了补偿近似值,建模者通常会估算表面的散射系数,以随机地解释反射方向性中实际的、与波长相关的变化。一种更具确定性的方法可以考虑一系列几何细节不断增加的模型,每个模型都在相应的频带上进行分析,以满足大表面尺寸的要求。因此,为了提高 GA 模拟的宽带空间精度,我们提出了一种多分辨率建模方法。使用波纹墙的比例模型测量、我们的方法与非 GA 技术的比较以及一些简单的听力测试,我们将展示
Benjamin B. Johnson, 1 Marie-Victoire Cosson, 2,3,9 Lorenza I. Tsansizi, 2,3,9 Terri L. Holmes, 1 Tegan Gilmore, 2 Katherine Hampton, 1 Ok-Ryul Song, 2,4 Nguyen TN Vo, 5 Aishah Nasir, 5 Alzbeta Chabronova, 6 Chris Denning, 5 Mandy J. Peffers, 6 Catherine LR Merry, 5,7 John Whitelock, 5,8 Linda Troeberg, 1 Stuart A. Rushworth, 1 Andreia S. Bernardo, 2,3, * 和 James GW Smith 1,10, * 1 诺维奇医学院代谢健康中心,东英吉利大学,诺维奇研究园,诺维奇 NR4 7UQ,英国 2 弗朗西斯·克里克研究所,伦敦 NW1 1AT,英国 3 NHLI,伦敦帝国理工学院,伦敦,英国 4 高通量筛选科学技术平台,弗朗西斯克里克研究所,伦敦 NW1 1AT,英国 5 医学院,再生和建模组织,生物发现研究所,诺丁汉大学公园分校,诺丁汉 NG7 2RD,英国 6 生命历程和医学科学研究所,威廉亨利邓肯大厦,西德比街 6 号,利物浦 L7 8TX,英国 7 医学生物化学和微生物学系,乌普萨拉大学,瑞典乌普萨拉 8 新南威尔士大学生物医学工程研究生院,悉尼,新南威尔士州 2052,澳大利亚 9 这些作者贡献相同 10 主要联系人 * 通信地址:a.bernardo@imperial.ac.uk (ASB),jgsmith@uea.ac.uk (JGWS) https://doi.org/10.1016/j.celrep.2023.113668
地下膜是板状结构,它们在体内大多数组织并分离不同类型的细胞。基底膜有助于维持体内组织的形状并调节不同的细胞功能。我们发现,小鼠肾脏中的基底膜缺陷发生在有肾脏疾病的证据之前,我们建议这些早期缺陷启动了导致肾脏疤痕的过程。引起肾脏疤痕的疾病会导致慢性肾脏疾病,从而影响世界人口的10%,并且没有治愈性治疗。 当肾脏失败时,有必要使用透析或移植的肾脏替代疗法,但成本正在升级,替代疗法不可普遍使用。 改善早期发现慢性肾脏疾病和靶向疗法以防止疾病进展的策略将对改善人类健康产生重大影响。 我们旨在调查基底膜如何维持健康并受到疾病影响。 主要重点将放在肾脏上,但我们还旨在研究其他组织和器官以了解总体地下膜调节。 我们将在培养物中进行人类细胞研究,在那里我们可以研究基底膜成分的产生方式,但我们无法正确测试其功能。 由于有必要了解基底膜在体内的功能,因此我们将使用小鼠和斑马鱼并行进行体内研究。引起肾脏疤痕的疾病会导致慢性肾脏疾病,从而影响世界人口的10%,并且没有治愈性治疗。当肾脏失败时,有必要使用透析或移植的肾脏替代疗法,但成本正在升级,替代疗法不可普遍使用。改善早期发现慢性肾脏疾病和靶向疗法以防止疾病进展的策略将对改善人类健康产生重大影响。我们旨在调查基底膜如何维持健康并受到疾病影响。主要重点将放在肾脏上,但我们还旨在研究其他组织和器官以了解总体地下膜调节。我们将在培养物中进行人类细胞研究,在那里我们可以研究基底膜成分的产生方式,但我们无法正确测试其功能。由于有必要了解基底膜在体内的功能,因此我们将使用小鼠和斑马鱼并行进行体内研究。
毛细血管的结构在不同的器官组织中有所不同。它由一层内皮细胞组成,内皮细胞通过细胞内连接在一起。根据内皮层和基底膜的形态和连续性,毛细血管分为 [1] 连续、[2] 有孔、[3] 正弦。连续毛细血管很常见,广泛分布于体内,具有紧密的内皮间连接和不间断的基底膜。有孔毛细血管的内皮间间隙为 20-80nm。正弦毛细血管的内皮间间隙为 150nm。根据组织或器官的不同,基底膜在肝脏外不存在,或在脾脏和骨髓外不连续地存在。大分子可以通过被动过程(例如非特异性液相跨毛细血管胞饮作用和通过内皮连接间隙或孔隙)或受体介导的运输系统穿过正常内皮。肺等器官具有非常大的表面积,因此总渗透性也相对较大,因此外渗率较高,这取决于电荷、形状、大小、HLB 和大分子的特性。脑内皮是最坚固的
耳膜位于耳朵深处,可以感知声音的频率和振幅。基底膜产生的振动被转换成电信号,然后传送到大脑进行处理。大脑根据声音的周期和基底膜上的最大激发位置来确定声音的频率;而附近或相邻区域的活动则会被忽略。如果你曾用指甲“抠”过蚊虫叮咬的部位,那么你就会体验到大脑能够忽略刺激邻近区域的活动;你会感觉到指甲压皱了被叮咬的皮肤,但可能没有注意到指尖柔软的肉垫压在蚊虫叮咬处旁边的皮肤上。这种效应称为掩蔽效应,人类的听觉系统为这种效应提供了大量机会。
肾小球滤过依赖于肾小球基底膜的 IV 型胶原 (ColIV) 网络,即包含 ColIV 的 α 3、α 4 和 α 5 链的三螺旋分子。编码这些链的基因 (Col4a3、Col4a4 和 Col4a5) 的功能丧失突变与 Alport 综合征 (AS) 中观察到的肾功能丧失有关。对病理机制的细胞基础的准确理解仍然未知,并且目前尚无针对此疾病的特定疗法。在这里,我们生成了一个新等位基因,用于在小鼠的不同肾小球细胞类型中条件性删除 Col4a3。我们发现足细胞在发育中的肾小球基底膜中特异性地产生 α 3 链,并且其缺失足以损害 AS 中所见的肾小球滤过。接下来,我们表明,通过 TGF β 1 增强的水平基因转移以及使用同种异体骨髓间充质干细胞和诱导性多能干细胞,可以挽救 Col4a3 表达并恢复缺乏 Col4a3 的 AS 小鼠的肾功能。我们的概念验证研究支持水平基因转移(例如细胞融合)可以实现 Alport 综合征的细胞治疗。
肾小球滤过依赖于肾小球基底膜的 IV 型胶原 (ColIV) 网络,即包含 ColIV 的 α 3、α 4 和 α 5 链的三螺旋分子。编码这些链的基因 (Col4a3、Col4a4 和 Col4a5) 的功能丧失突变与 Alport 综合征 (AS) 中观察到的肾功能丧失有关。对病理机制的细胞基础的准确理解仍然未知,并且目前尚无针对此疾病的特定疗法。在这里,我们生成了一个新等位基因,用于在小鼠的不同肾小球细胞类型中条件性删除 Col4a3。我们发现足细胞在发育中的肾小球基底膜中特异性地产生 α 3 链,并且其缺失足以损害 AS 中所见的肾小球滤过。接下来,我们表明,通过 TGF β 1 增强的水平基因转移以及使用同种异体骨髓间充质干细胞和诱导性多能干细胞,可以挽救 Col4a3 表达并恢复缺乏 Col4a3 的 AS 小鼠的肾功能。我们的概念验证研究支持水平基因转移(例如细胞融合)可以实现 Alport 综合征的细胞治疗。
几何声学 GA 建模技术假设表面相对于感兴趣的波长较大。对于给定场景,实践者通常会创建一个具有大而平坦表面的 3D 模型,该模型在很宽的频率范围内满足假设。这种几何近似会导致模拟声场的空间分布出现误差,因为影响反射和散射行为的几何细节被忽略了。为了补偿近似,建模者通常会估计表面的散射系数,以随机地解释反射方向性中实际的、与波长相关的变化。一种更具确定性的方法可以考虑一系列几何细节不断增加的模型,每个模型都在相应的频带上进行分析,以满足大表面尺寸的要求。因此,为了提高 GA 模拟的宽带空间精度,我们提出了一种多分辨率建模方法。使用波纹墙的比例模型测量、我们的方法与非 GA 技术的比较以及一些简单的听力测试,我们将展示