这篇早期版本的文章已经过同行评审和接受,但尚未通过构图和复制过程。最终版本的样式或格式可能会略有不同,并且将包含指向任何扩展数据的链接。
crispr/cas9是一种有效且精确的基因编辑技术,它提供了一种用途解决方案,用于建立针对遗传疾病的治疗方法。当前的CRISPR/CAS9向细胞传递,主要依赖于病毒载体,这些病毒载体受到包装容量和安全问题的限制。为了解决这些问题,我们报告了一个非病毒输送,其中CAS9•SGRNA核糖核蛋白(RNP)可以封装到超分子纳米颗粒(SMNP)向量中以形成RNP smnps,然后可以通过超级分子nanosubsubsubsibed-Midied-MiDied-MiDied-MiDied-MiDied-MiDied-MiDied-MiDied-MiDied(Snmd)将其递送到靶向细胞中。利用U87胶质母细胞瘤细胞系作为模型系统,我们检查了多种含RNP纳米颗粒的细胞摄取参数。我们进一步研究了绿色荧光蛋白(GFP)表达U87细胞系(GFP-U87)中剂量依赖性和时间依赖性CRISPR/CAS9介导的基因破坏。最后,我们证明了这种优化的SMNP公式在共递送的Cas9蛋白和两个靶向外显子45-55(708 kb)的SGRNA中的实用性。该区域的突变导致Duchenne肌肉营养不良(DMD),这是一种严重的遗传肌肉浪费疾病。我们观察到这些基因缺失货物在人心肌细胞系(AC16),诱导多能干细胞(IPSC)和间质干细胞(MSC)中有效递送。
最佳护理路径描述了澳大利亚所有接受治疗的癌症患者应获得的护理标准。这些路径支持患者和护理人员、卫生系统、卫生专业人员和服务,并鼓励在患者旅程的每个阶段始终如一地进行最佳治疗和支持性护理。路径中提供的指导基于七项关键原则:以患者为中心的护理;安全和优质的护理;多学科护理;支持性护理;护理协调;沟通;以及研究和临床试验。
GABA 能神经元是皮质网络中的关键回路元素。尽管越来越多的证据表明抑制细胞在外侧 (LA) 和基底 (BA) 杏仁核功能中发挥着关键作用,但这些杏仁核中的 GABA 能神经元数量及其不同类型的比例尚未确定。使用无偏立体学,我们发现雄性和雌性小鼠的 BA (22%) 中的 GABA 能神经元比例明显高于 LA (16%)。无论性别,左右半球之间均无差异。此外,我们还评估了两个杏仁核中主要抑制细胞类型的比例。使用转基因小鼠和病毒策略可视化抑制细胞并结合免疫细胞化学,我们估计以下细胞类型共同构成了 LA 和 BA 中的绝大多数 GABA 能细胞:轴突-轴突细胞(5.5%-6%)、表达小清蛋白(17%-20%)或胆囊收缩素(7%-9%)的篮状细胞、表达生长抑素的树突靶向抑制细胞(10%-16%)、含有 NPY 的神经胶质细胞(14%-15%)、表达 VIP 和/或钙网膜蛋白的中间神经元选择性中间神经元(29%-38%)以及表达生长抑素和神经元一氧化氮合酶的 GABA 能投射神经元(5.5%-8%)。我们的结果表明,这些杏仁核包含在其他皮质区域发现的所有主要 GABA 能神经元类型。此外,我们的数据为未来的研究提供了重要的参考,旨在揭示在不同病理条件下通常观察到的 GABA 能细胞数量和抑制细胞类型的变化,并模拟健康和疾病状态下杏仁核网络的功能。
例如,我们可以将二维磁体的磁性印记到其他层上,而不改变它们的固有性质,从而创造出新型的自旋电子和磁子装置。[8–10] 这种设计概念可以用于将磁性与超导相结合的系统,以实现拓扑超导。[11,12] 由于它在构建用于拓扑量子计算的基于马约拉纳的量子比特模块中具有潜在作用,因此目前它正受到广泛关注。[12–14] 虽然很少有潜在的真实材料表现出拓扑超导性,[15–18] 但设计材料中所需的物理特性来自不同成分之间精心设计的相互作用。 对于拓扑超导,需要将 s 波超导与磁性和自旋轨道耦合相结合,以创造出人工拓扑超导体。 [12,19] 然而,组分之间的耦合对界面结构和电子特性高度敏感 [2,20],因此,具有原子级清晰和高度均匀界面的范德华材料是一个具有吸引力的平台,可用于实现和利用设计材料中出现的奇异电子相。最近有研究表明,层状材料在单层 (ML) 极限下仍能保持磁性。[4,5,21] 虽然第一份报告依赖机械剥离进行样品制备,但相关材料三溴化铬 (CrBr 3 ) 和 Fe 3 GeTe 2 也在超高真空 (UHV) 下使用分子束外延 (MBE) 生长,[22,23] 这对于实现干净的边缘和界面至关重要。由于这些材料的层状性质,它们本身缺乏表面键合位点,从而阻止了层之间的化学键合,并导致对界面的更好控制。最近,我们利用MBE成功制备了基于vdW异质结构的超导铁磁混合体系。[24,25] 更重要的是,通过结合自旋轨道耦合、二维铁磁CrBr 3 和超导铌二硒化物(NbSe 2 ),我们利用低温扫描隧道显微镜(STM)和扫描隧道光谱(STS)证明了一维马约拉纳边缘模式的存在。[25] 然而,对于未来的应用,还需要进一步系统的研究,以更好地理解在NbSe 2 基底上生长的单层CrBr 3 的电子和磁性。
- 我们实现并验证了一种针对基底神经节内和周围皮层下区域的脉冲网络模型的联合仿真方法,并将其与每个皮层区域的平均场网络模型相结合。 - 我们的模拟基于一个规范的连接组,包括皮层和基底神经节区域之间的详细路径,并结合了健康对照者和帕金森病患者的特定受试者优化权重。 - 我们通过证明所实现的模型在静息状态下显示出生物学上合理的动态来提供概念证明,包括虚拟患者的丘脑活动减少,以及虚拟深部脑刺激期间的丘脑活动正常化和主要在额叶区域的分布改变的皮层活动。 - 所提出的联合仿真模型可用于为个别患者定制深部脑刺激。摘要深部脑刺激 (DBS) 已成功应用于各种神经退行性疾病,作为一种有效的对症治疗。然而,它在大脑网络中的作用机制仍然知之甚少。许多虚拟 DBS 模型将基底神经节周围的子网络及其动态分析为脉冲网络,其细节由实验数据验证。然而,连接组学证据表明 DBS 的广泛影响影响了许多不同的皮质和皮质下区域。从临床角度来看,除了运动影响之外,DBS 的各种影响也已得到证实。神经信息学平台虚拟大脑 (TVB) 提供了一个建模框架,使我们能够虚拟地执行刺激(包括 DBS),并在进行 DBS 导线置入的侵入性手术之前从动态系统的角度预测结果。为了准确预测 DBS 的影响,我们实施了一个详细的基底神经节脉冲模型,并通过我们之前开发的联合仿真环境将其与 TVB 相结合。这
在β带中升高的同步振荡活性已被认为是帕金森氏病(PD)的病理生理标记。最近的研究表明,帕金森氏症与丘脑下核(STN)中β爆发活性的幅度和持续时间的增加密切相关。但是,如何从基底神经节(丘脑皮层(BGTC)运动网络)从正常状态变为帕金森氏症状态。在这项研究中,我们同时记录了三个雌性恒河猕猴中的STN,Globus Pallidus(GPI)(GPI)的内部段(GPI)(GPI)和Primary Motor Cortex(M1)的局部现场潜在活性,并表征了Beta爆发活动如何随着动物从正常而过渡到更严重的parkinsonian状态而变化。帕金森氏症与在STN和GPI的低β频段(8 - 20 Hz)中持续时间更长的β爆发发生率增加,而在M1中却没有。我们观察到Beta爆发活性的更大并发,但是,在PD中的所有记录位点(M1,STN和GPI)中。在BGTC网络的多个节点上同时存在低β爆发活性,而PD电动标志的严重程度增加了令人信服的证据,以支持低Beta同步旋转振荡的假说在PD的潜在病理生理学中起重要作用。鉴于其沉浸在整个电机电路中,我们假设这种升高的β波段活性会干扰BGTC网络中信息流的空间 - 时间处理,从而导致PD中的运动功能受损。
石墨烯的生产是在金属基底上用化学气相沉积 (CVD) 方法进行的,因为该方法可重复、可扩展,且能获得具有大畴尺寸的高质量层。到目前为止,各种过渡金属已作为基底进行了测试 [4–10],其中铜箔由于碳溶解度低,已被证明是控制单层和双层生长的合适基底。[11–14] 通常,铜箔上石墨烯畴的成核以随机取向发生,从而形成多晶单层石墨烯片 [15] 甚至扭曲的双层石墨烯。[16] 相邻畴合并后会引入晶界,从而限制载流子迁移率。[17] 使用六边形 Cu(111) 表面作为基底,结果表明石墨烯成核发生在与基底晶格对准的位置,从而有效减少晶界。 [18,19] 在实际应用中,需要将石墨烯从金属基底转移到非金属目标基底(如 SiO 2 、SiC)。在许多情况下,转移层的质量不如原生石墨烯。众所周知,基底的选择可能会影响石墨烯的特性。[20–22] 一方面,Kraus 等人早些时候提出,铜基底的刻面可能会压印在石墨烯上,即使在平坦的基底上,转移后也会导致层起波纹。[23] 另一方面,研究表明,在 SiO 2 上转移的单晶石墨烯中的纳米波纹会降低电子迁移率。[24] 此外,在 Bernal 堆叠双层石墨烯中,在不同基底上都观察到了应变诱导的位错线[25–27],这可能会限制载流子迁移率。即使在目标基底上转移后,这些位错也可能存在。了解这些位错的形成和生长衬底的影响将为设计双层石墨烯和其他堆叠二维材料的特性开辟一条道路。我们利用低能电子显微镜 (LEEM) 和衍射 (LEED) 研究了在 Cu(111) 衬底上以及转移到外延缓冲层后 CVD 生长的石墨烯的厚度和晶体度。我们发现,在石墨烯生长过程中,衬底表面会重新构建为小平面,即使在单层石墨烯中也会留下波纹结构。LEEM 暗场测量揭示了衬底小平面在双层(和三层)石墨烯中堆叠域形成过程中的作用,这些堆叠域在转移过程中得以保留。
基于微电极上葡萄糖电氧化的紧凑型电化学装置[1-4]具有广泛的应用范围,包括食品工业(果汁中葡萄糖含量的分析)[5,6]和医学(作为植入式心脏刺激器的电源和血液中的葡萄糖传感器)[7-10]。在宏观紧凑电极上最大化电流(和功率)密度的一种方法依赖于纳米结构表面,这增加了电化学活性的比表面积。纳米多孔阳极氧化铝(AAO)提供了一个有趣的模板系统,可通过涂敷电催化剂来创建此类电极。它们平行的圆柱形孔隙的几何形状有利于在紧凑的体积中提供高表面积,同时允许有效地往返于表面的运输,从而优化系统的整体催化活性[11-13]。 AAO 作为模型模板系统最吸引人的特点是可以根据制备参数(阳极氧化电压和持续时间、电解质类型、随后的各向同性化学蚀刻)直接控制几何参数(孔径和长度、孔间距)[14,15]。AAO 模板合成的制备技术得到了广泛的研究:开发了不同质量的合成方法