我们讨论了一种采用饮水鸟 (DB) 热机械模型的热电能产生 (TEG) 技术。饮水鸟的运动是由熵流产生的,熵流由热力学第二定律解释,而热力学第二定律是热机的基本定律之一。我们提出一种应用于饮水鸟运动的盘式磁铁电磁感应 (DM-EMI)。特别讨论了将 DM-EMI 推广到用于机电能转换的热机以及提取电能的特性。DM-EMI 的电能具有热机产生的机械旋转的有限发电特性,但它对于风力涡轮机、燃煤和核电站的机电能转换的实际应用非常有用。作为一种能量收集技术,DM-EMI 将有助于解决环境问题,保持清洁易得的能源。
经典力学在时间反演下是不变的:它的基本定律不区分过去和未来。观察到的时间箭头是一种宏观现象,它取决于宏观变量的使用以及这些变量定义的熵在过去较低的偶然事实。量子力学也是这样吗?一方面,薛定谔方程是时间反演不变的,量子场论也是如此(直到宇称变换和电荷共轭)。基本物理学是时间反演不变的,时间取向的来源又是宏观和熵的。基本量子现象不带有首选的时间箭头。然而,另一方面,量子理论的形式主义通常以明显的时间取向来定义。在这里,我们解决了物理学和形式主义之间的这种紧张关系。我们研究了量子形式主义的时间取向的原因,并表明这种紧张关系是可以解决的。形式主义的不对称性是由于
摘要 虽然理论上可以利用狭义相对论实现向前的时间旅行,但许多物理学家认为向后的时间旅行是不可能的,因为它需要超光速、虚质量、奇异质量和/或无限长的蒂普勒圆柱,这些概念要么无法实现,要么具有高度推测性。尽管没有禁止向后时间旅行的基本定律,但这种时间旅行会破坏因果关系并导致悖论。这可以用简单的祖父悖论来证明。祖父悖论可以通过量子力学的多重世界诠释来解决,即通过隔离事件发生的世界,而不会破坏因果关系。然而,这个解决方案忽略了叠加原理,允许波函数之间的相互作用。为了使向后时间旅行与多重世界诠释兼容,薛定谔方程必须是非线性的,这与诠释本身的假设相矛盾。
摘要在本文中,我们提出了一种新的最小数学概念方法,用于使用光两极化的量子力学,以使中学学生对量子化,以使学生更接近所谓的量子力学思维方式。我们调查了学生如何思考一些基本概念和基本定律,我们发现某些概念在年轻的年龄段也是可以理解的。我们研究了所谓的状态圈的引入,它可以忠实地代表量子机械形式主义,而无需让学生参与抽象代数计算。然后,我们对学生对叠加原则和缺乏轨迹的想法进行了分类和分析,发现测量和缺乏轨迹的概念是有问题的。我们探讨了年轻的学生倾向于拥有类似格式塔的量子概念的心理模型,同时也能够正确地使用可视化量来在量子领域进行推理。总的来说,本文提供了最早在中学中引入量子力学基本特征的证据。
物理学是研究物质结构和性质以及能量转换的科学。物理学以数学为语言,以实验验证为指导,建立了自然的基本定律,这些定律是所有自然科学和技术的基础。物理学研究包括学习已发现的一般原理和现象,并培养通过研究推进这些知识的技能。材料科学是一个跨学科领域,涵盖了多个科学和技术学科。物理学是材料科学的核心,因为它为理解物质的机械、热、光学和磁性提供了理论基础。材料科学的重点领域为学生准备了 21 世纪美国劳动力需求旺盛的领域。材料科学家受雇于生产金属、陶瓷、生物医学植入物、集成电路芯片和超导材料等产品的公司。该课程的主要重点是纳米材料,为学生准备了纳米技术和能源相关问题领域的知识。主要课程要求
p lant g enetics -genbt044n s emester:f所有e CTS:3 r equirement:e xam d escription:学生将学习在生物细胞中携带生物学信息的分子的结构和作用,在生命细胞,组织和遗传性材料的复制中。他们了解高等植物的遗传结构和功能。细胞周期的阶段以及植物有丝分裂和减数分裂的过程及其遗传后果,特别着重于遗传变异性的来源,与锁植物双重施肥有关的宏观和微孢子的形成。Mendel所描述的遗传的基本定律在园艺植物中进行了说明,其次是Mendelian以外的其他遗传过程的例子,并以园艺植物的例子进行了说明。我们将回顾多倍体植物如何在园艺生产,进化,它们的遗传后果,多倍体类型及其潜在用途中重要。
20 世纪早期之前,物理学语言建立了一个框架,理论上,所有现象对于近距离观察者来说都是可量化和可预测的。然而,随着量子力学的发现,这种确定性的世界观发生了根本性的改变,量子力学提出了真正的随机性和不可预测性。在过去的一个世纪里,许多突破性的实验都证明了这一基本定律,这些实验主要以光(量子)为中心。如今,人们越来越关注单光子的实际应用。在本论文中,我们研究了单光子的起源,并使用非线性光学过程设计了实验。深入研究细节,我们使用长度为 10、20 和 30 毫米的 ppKTP 晶体对二次谐波的产生进行了研究,并比较了结果,指出效率和温度带宽随长度变化的趋势相反。此外,我们还利用 BBO 晶体探索了下转换光子的数值和实验空间特性。还添加了一些结果来解释从相关光子对获得纠缠的过程。
引言。—量子热力学[1-9]是一个具有研究的研究领域,其中在包括热发动机和冰箱在内的各种中和纳米驱动器中都寻求真正的量子效应[10,11]。在热力学过程中寻求量子效应远非琐碎的任务。正如恩里科·费米(Enrico Fermi)在1936年夏季会议上在哥伦比亚大学(纽约)举行的讲座中清楚地解释的[12],“在纯热力学中,基本定律被认为是基于实验证据的假设,并且结论是从他们的情况下得出的,而没有进入景象机制。”热力学具有一个全等特征,提供对经典和量子设置有效的预测。为了在热力学的背景下找到真正的量子优势(GQA),显然需要超越平衡条件并研究量子系统的非平衡动力学。在这种情况下,Alicki和Fannes [13]于2013年首次引入的量子电池最近引起了很多关注[15-17]。