与总体自旋行为相比,单分子自旋行为可以在基本构件水平上被准确理解、控制和应用。单分子电子自旋和核自旋在监测和控制方面的潜力为分子自旋器件的发展带来了希望,这些器件通过将单个分子连接在两个电极之间而制成。金属配合物因其优越的磁性而广受赞誉,被广泛用于探索自旋效应的器件中。此外,具有高信噪比、时间分辨率和可靠性的单分子电学技术有助于理解自旋特性。本综述重点介绍了含有金属配合物的器件,特别是单分子磁体,并系统地介绍了该领域在单分子水平上的实验和理论发展现状,包括电子和核自旋的基本概念及其基本自旋效应。然后,介绍了几种在单分子水平上调控金属配合物自旋特性的实验方法,以及相应的内在机制。简要讨论了单分子自旋器件的综合应用和面临的巨大挑战,并展望了该领域未来的潜在发展方向。
I.引入植物的任何部分,包括细胞,组织和器官,都可以在人工培养基,无菌环境和受控环境中进行培养。此过程称为“植物组织培养”。这组方法是一种测试策略,可以根据细胞理论来显示细胞理论,该方法指出,细胞是所有生物中的结构和繁殖的基本构件,即单一细胞的遗传能力可以产生整个多细胞生物的遗传能力。植物细胞的必不可少的植物细胞的特征是微化量的快速构成量子的量表,以快速的量表和概括性地构成了相当的量子,并逐渐构成了genotyper in genotyper in genotyper in nimeper in genotype contemypers in genotype airtipe and genotype contemypeptip。具有在世界范围内生产健康幼苗的能力,在园艺,工业和农业中,微繁殖变得越来越重要。年份和植物周期的减少(Suman,2017年)。此外,它是植物遗传保护的重要工具。资源,作物增强和新品种通过基因工程和somaclonal变异而传播。启动培养基是营养溶液单独或与天然提取物结合使用,并发表了一些重要的发现(Knudson L 1922);然而,体外鉴定植物组织培养物的建立取决于植物生长调节剂的存在[Thimann等,1939]。不同组合和数量的重要发展
我们报告了使用深度学习模型设计从头蛋白质的方法,该方法基于基本构件通过分层模式相互作用。深度神经网络模型基于将蛋白质序列和结构信息转换成乐谱,该乐谱的特点是每种氨基酸具有不同的音高,音符长度和音符音量的变化反映了二级结构信息以及有关链长和不同蛋白质分子的信息。我们训练了一个深度学习模型,该模型的架构由几个长期短期记忆单元组成,这些数据来自由按某些特征分类的蛋白质的音乐表示组成的数据,这里重点关注富含 α 螺旋的蛋白质。然后,我们使用深度学习模型生成从头乐谱,并将音高信息和链长转换成氨基酸序列。我们使用基本局部比对搜索工具将预测的氨基酸序列与已知蛋白质进行比较,并使用优化蛋白质折叠识别方法 (ORION) 和 MODELLER 估计折叠蛋白质结构。我们发现,这里提出的方法可用于设计尚不存在的从头蛋白质,并且设计的蛋白质会折叠成指定的二级结构。我们通过在显式水中进行分子动力学平衡,然后使用正常模式分析进行表征,验证了新预测的蛋白质。该方法提供了一种设计新型蛋白质材料的工具,这些材料可以作为生物、医学和工程领域的材料得到有用的应用。
摘要:胆固醇是生物膜中的一个中心构建块,它诱导定向顺序,减慢扩散,使膜僵硬以及驱动结构域的形成。分子动力学(MD)模拟在分子水平解决这些效果方面起着至关重要的作用。然而,最近显而易见的是,不同的MD力场在定量不同的行为上预测了不同的行为。尽管很容易被忽视,但由于磁场迅速发展朝模拟体内条件的复杂膜的模拟迅速发展:相关的多组分仿真必须准确捕获其基本构件之间的相互作用,例如磷脂和胆固醇。在这里,我们定义了针对C-H键顺序参数的二元脂质混合物模拟的定量质量度量,以及来自NMR光谱的侧向扩散系数以及X射线散射的构型因子。基于这些措施,我们对常用的力场描述棕榈酰丙酰磷脂酰胆碱(POPC)和胆固醇的二元混合物的结构和动力学的能力进行系统评估。没有测试的力场清楚地表现出在经过测试的属性和条件上的表现。仍然,SlipID参数在我们的测试中提供了最佳的总体性能,尤其是当评估中包含动态属性时。这项工作中介绍的质量评估指标将尤其是使用自动方法来促进多组分膜的未来力量现场开发和改进。
摘要。随着计算能力的进步,半导体制造和操作的环境成本已成为关键的关注。但是,当前的可持续性指标无法量化现代处理器的基本构件晶体管一级的碳散发。本文引入了每个晶体管(CPT)for-mula的碳,这是一种新颖的方法和绿色实施度量,以测量从制造到寿命末期的半导体芯片的CO 2足迹。通过整合硅晶体生长,晶圆生产,芯片制造和运营功率耗散的排放,CPT公式为评估计算硬件的维持能力提供了科学严格的基准。使用Intel Core i9-13900k,AMD Ryzen 9 7950x和Apple M1/M2/M3处理器的现实世界数据,我们揭示了令人震惊的见解 - 制造的排放占主导地位,贡献了60-125千克CO 2,每CPU,远远超过了超过典型设备的运营装置。值得注意的是,尽管具有广泛的制造影响,苹果的高晶体管计数M系列芯片尽管能源效率,但与传统处理器相比,其碳足迹明显更大。这项研究为绿色计算计划建立了一个关键参考点,使行业领导者和研究人员能够在减少半导体相关的排放中做出数据驱动的决策,并为信息技术过程的绿色因素提供正确的时间。所提出的公式为可持续计算中的碳吸引芯片设计,监管标准和未来创新铺平了道路。
摘要:Van der Waals(VDW)磁铁很有希望,因为它们具有掺杂或合金组成的可调磁性能,其中磁相互作用的强度,它们的对称性和磁各向异性可以根据所需的应用来调节。到目前为止,大多数基于VDW磁铁的自旋设备都限于低温温度,其磁各向异性有利于平面外或倾斜的磁化方向。在这里,我们报告了室温外侧自旋阀设备,其平面内磁化和VDW Ferromagnet的自旋极化(CO 0.15 Fe 0.85)5 GETE 2(CFGT)在异性捕获岩中使用墨烯。密度功能理论(DFT)计算表明,各向异性的幅度取决于CO浓度,是由CO在最外面的FE层中取代引起的。磁化测量结果揭示了上述CFGT中的室温铁电磁作用,并在室温下清除了延迟。由CFGT纳米层和石墨烯组成的异质结构用于实验实现旋转阀装置的基本构件,例如有效的自旋注入和检测。对自旋转运和汉尔自旋进液测量的进一步分析表明,在与石墨烯界面处的界面上具有负自旋极化,并由计算出的CFGT状态的自旋偏振密度支持。在室温下,CFGT的平面磁化证明了其在石墨烯侧旋转式设备中的有用性,从而揭示了其在自旋技术中的潜在应用。关键字:范德华磁铁,自旋阀,石墨烯,范德华异质结构,2D磁铁,平面磁化,自旋极化M
本课程研究了大脑功能,电压门控离子通道和突触传递的两个基本构件。我们首先讨论离子通道的基本特性,即它们的分子结构和动力学。接下来,我们考虑如何在哺乳动物中枢神经系统神经元中塑造发射模式以及如何通过离子通道组成中的细微变化来调节射击模式。第二,我们考虑突触传播的基本分子过程。基于对神经元发射模式和突触传递的理解,我们然后探索这些基本属性如何在网络级别塑造神经元通信。我们讨论了示例,其中复杂的网络函数(例如脑电波,注意力,意识和听觉处理)可以通过离子通道或突触功能的基本属性追溯到并解释。在实验室中,我们从小龙虾的运动轴突和肌肉纤维中进行细胞外和细胞内记录,这使我们能够观察动作电位如何实时与突触电位配对。整个班级将在一个学期的过程中执行一个项目,并期望数据应足够数量和质量作为出版物。过去的一些班级项目导致有关农药影响和治疗癫痫的药物的作用的出版物。在即将到来的学期中,我们计划检查孤雌小龙虾(大理石小龙虾)的相同神经肌肉制剂。这些动物都是女性,是彼此的遗传克隆。讲座我们将首先检查神经肌肉制剂的电生理和形态学特性,因为在该物种中没有进行过研究,据信这是最近通过突变出现的(1997年)。此外,已经对大理石小龙虾的基因组进行了测序,这可能是离子通道分子药理研究的宝贵资源。
所有活生物体在其中央代谢中都有类似的反应,为所有19个基本构件和降低力量提供了前体。确定糖酵解20的替代代谢途径是否可以在大肠杆菌中运行,我们在硅设计,合理的工程和自适应21实验室进化中互补。首先,我们使用了一个基因组规模模型,并在该生物体的22个代谢网络中鉴定了两种潜在途径,取代了规范的Embden-Meyerhof-Parnas(EMP)糖酵解,将23个转化为有机酸的磷酸化。这些糖酵解路线之一是通过甲基乙二醇(通过丝氨酸生物合成和降解)进行的。然后,我们在大肠杆菌菌株中实施了两种途径25具有缺陷的EMP糖酵解。令人惊讶的是,通过甲基乙二醇的途径立即在26个三氧磷酸异构酶缺失菌株中培养在甘油上。相比之下,在磷酸甘油酸激酶27缺失菌株中,对于实现功能性28甲基甘氨酸途径的过表达是必要的。此外,我们设计了“丝氨酸分流”,该“丝氨酸分流”通过丝氨酸生物合成和降解转换为丙酮酸,绕过烯醇酶缺失。最后,为了探索30种这些替代方案中的哪些替代方法,我们使用烯醇酶缺失菌株进行了自适应实验室31进化研究。证明进化的突变体使用丝氨酸分流。32我们的研究揭示了代谢途径的灵活性重新定位,以建立新的代谢产物链接和重新连接33中央代谢。34
摘要:Van der Waals(VDW)磁铁很有希望,因为它们具有掺杂或合金组成的可调磁性能,其中磁相互作用的强度,它们的对称性和磁各向异性可以根据所需的应用来调节。到目前为止,大多数基于VDW磁铁的自旋设备都限于低温温度,其磁各向异性有利于平面外或倾斜的磁化方向。在这里,我们报告了室温外侧自旋阀设备,其平面内磁化和VDW Ferromagnet的自旋极化(CO 0.15 Fe 0.85)5 GETE 2(CFGT)在异性捕获岩中使用墨烯。密度功能理论(DFT)计算表明,各向异性的幅度取决于CO浓度,是由CO在最外面的FE层中取代引起的。磁化测量结果揭示了上述CFGT中的室温铁电磁作用,并在室温下清除了延迟。由CFGT纳米层和石墨烯组成的异质结构用于实验实现旋转阀装置的基本构件,例如有效的自旋注入和检测。对自旋转运和汉尔自旋进液测量的进一步分析表明,在与石墨烯界面处的界面上具有负自旋极化,并由计算出的CFGT状态的自旋偏振密度支持。在室温下,CFGT的平面磁化证明了其在石墨烯侧旋转式设备中的有用性,从而揭示了其在自旋技术中的潜在应用。关键字:范德华磁铁,自旋阀,石墨烯,范德华异质结构,2D磁铁,平面磁化,自旋极化M
核苷和核苷酸构成核酸的基本构件,生命的基本分子成分通过传输和存储遗传信息在遗传中起着至关重要的作用(Minchin和Lodge,2019)。在这里,我们汇总了该研究主题的贡献,并将解决合成,表观遗传学和治疗方法的问题(Liu等人; Sabat等。;伯迪斯; Naciuk等。; Sergeeva等。)。DNA表达取决于复制后化学修饰后的核苷酸。其中之一是胞嘧啶嘧啶环在C-5处仅发生的DNA甲基化,作为CpG二核苷酸启动子中的表观遗传标记。甲基化水平直接连接到诸如癌变之类的生物学过程的促进或功能障碍。破坏甲基化平衡的因素问题引起了极大的兴趣,Liu等人。探索了金属在DNA甲基化水平上的作用。作者使用原位杂交(FISH)方法来确认金属离子对DNA甲基化的影响。核酸还参与了许多细胞过程,例如细胞信号传导(ATP作为能源和cAMP作为细胞内的第二个使者传输信息),使用构成构建体块传递正确的氨基酸或重复过程(DNA复制或转录到Messenger RNA)的转移RNA的蛋白质翻译。最好的例子是发现和生产M -RNA疫苗,例如反对Covid -19的一种。通过分子生物学技术(例如聚合酶链反应(PCR))合成核酸的合成,使得能够以良好的限制和舒适的数量获得大分子多样性。几种疫苗已经进行了传染病的临床试验(流体疾病,寨卡病毒,尼帕病毒,呼吸道合胞病毒),遗传疾病和癌症(Khan等,2023)。DNA是由4个核碱基编码的系统,近年来已被视为存储信息以满足当前服务器的能源成本的宝贵媒介。DNA具有足够的稳定