摘要:满足下一代蜂窝网络中的移动运输需求会增加能源供应的成本。可再生能源是以自我融合和成本效益的方式对电站进行电力站的有前途解决方案。本文提出了一种最佳方法,用于设计光伏(PV) - 故障系统,以提供蜂窝网络中的基站。提出了一种系统的方法来确定光伏发电机和电池容量的功率等级,从技术和经济的角度来确定投资成本和运营支出,而PV -Battery系统的功率自主权在多目标框架中最大化。该提出的方法适用于最佳尺寸的光伏电池系统,用于三种具有不同太阳能可用性的情况,以研究环境条件的效果。使用拟议方法解决问题的解决方案可导致一套以不同成本与不同级别的电力自主权的解决方案。根据每个标准的重要性和决策者的偏好,可以选择一种实现的解决方案,以实现光伏电池系统以提供蜂窝网络中的基站。
我们将让客户随时随地使用我们的网络放在首位,通过全年 24 小时监控网络并将覆盖范围扩大到偏远、人烟稀少的地区,在平时和灾难期间提供安全稳定的连接。我们还采取措施确保灾难期间的连接安全,包括设置大中型区域基站和部署移动基站车辆。
目前,有许多有关基础站能源节能和排放减少的研究,主要涵盖了两个方面。一方面,考虑到基站本身,基本站睡眠机构用于提高系统的能源效率[4-6]。另一方面,考虑到能源使用,提出了绿色基站系统[7]的概念,该概念使用可再生能源或混合动力为基站系统提供能源,从而使基站和智能电网之间的能量流[8-11]。对储能单元的容量的合理配置可以提高基站电源的稳定性和安全性[12],并降低微电网系统的经济成本[13]。许多研究人员已经对光学存储微电网容量的最佳配置进行了广泛的研究。根据光伏存储系统联合操作的特征,研究[14]优化了以最低初始投资为目标的不同类型的电池的配置。在[15]中,对于分布网络中的多个光伏存储微电网,使用两层最佳配置方法来确定每个光伏存储微电网的经济调度方案,并优化光伏存储的能力。
针对多用户第五代应用,提出了一种非常规的准模块化基站相控阵架构综合技术。通过在最佳不规则阵列的元素处保持均匀的幅度和线性前进的相位,可以实现功率高效的旁瓣抑制,从而有效地减轻用户间的干扰。布局不规则性是在阵列切片内实现的,该切片以旋转方式重复。采用顺序旋转技术来获得模块化并改善圆极化特性。使用改进的 k 均值聚类算法来形成最佳子阵列。仿真结果表明,所提出的准模块化拓扑在旁瓣性能和集成阵列设计复杂性之间提供了良好的折衷。
GrafNav/GrafNet 是由 Waypoint Consulting Inc. 开发的 Windows 软件包,可校正原始 GPS 数据,从而显著提高精度。只要有合适的 GPS 设备和适当的现场程序,精度可以达到 1 厘米或更高。这种处理需要两个站点的数据才能进行校正。一个站点通常位于已知位置,称为参考站、基站或主站。第二个接收器可以是固定的(静态)或移动的(动态),称为流动站或远程站。两个接收器数据的组合称为基线。GrafNav/GrafNet 的独特之处在于它还可以通过移动基线升级支持基站移动的应用程序,当基站无法位于固定位置时,此功能非常有用。
摘要:5G基站的广泛安装引起了显着的能源消耗激增,以及与达到碳中立性的相结合的情况。众多研究表明,分布式光伏(PV)和储能系统(ESS)的掺入是一种有效的措施,可减少实用性网格中的能源消耗。根据当地条件对PV和ESS设置的优化对基地电源系统的经济和生态益处有直接影响。在本文中提出了改进的基站电源系统模型,该模型考虑到转换器的行为。通过此,确定了考虑经济和生态因素的多方面评估标准。然后,实现了多种情况下基站的PV和ESS容量优化。案例研究表明,PV和ESS的优化过程受到转换器的行为的影响。
无线通信得到了快速发展,尤其在更高的数据速率、更智能的设备和多样化的应用方面。此外,与 4G 技术相比,5G 使用高频段,这使得节点更加密集。为了在无线接入网(RAN)中实现最佳性能并满足不断增长的移动用户的需求,需要构建数百万个基站(BS)。从 2007 年到 2015 年,发展中地区的基站数量增加了 200 多万,数据传输速率每五年增加十倍 [1]。然而,预期的流量负载激增需要 5G 新无线电实现更密集的网络部署和网络致密化,这会导致更高的能耗。大部分能量被典型 RAN 中的基站消耗。然而,随着更多具有大规模多输入多输出(MIMO)的基站的部署,NR 中的能源效率变得更加紧迫和具有挑战性。
标题:飞机上的 GSM 作者:Carlos Gonzaga López 主任:Ari Rantala(TAMK 应用科学大学) 日期:2008 年 12 月 15 日 摘要 多年来,航空业一直在寻找一种允许移动通信的技术飞机上的通信服务价格实惠。然而,一系列的技术障碍使得使用众所周知的 GSM 网络来实现这一目的变得困难。机载移动终端由于距地球基站较远,辐射功率较高,可能对航电系统造成严重干扰。另一方面,鉴于 GSM 小区之间产生的切换频率较高,机载移动终端可能会因需要大量控制信号而降低地面系统的性能。为了解决上述问题,2005年出现了一种被称为车载GSM(GSMOB)的技术解决方案。机载 GSMOB 系统由一个低功耗基站和一个在 GSM 工作频段发射噪声的相关单元组成。这样,飞机内部的噪声水平就会增加到高于地面基站的信号水平,从而阻止终端与所述基站同步,并促使它们与机载基站同步。当与机载站同步而不是与地面站同步时,移动终端辐射的功率水平会大大降低。以下最终项目旨在编写一份文件,提供 GSMOB 系统的全球愿景,该系统已开始由欧洲各地的重要航空公司进行商业化提供。此外,不仅讨论了纯粹的技术问题,还讨论了与现行法规和相关操作程序相关的问题。