单相电解质的低离子电导率已不能满足600 ˚C以下的使用要求,制备高离子电导率的复合电解质成为发展方向。本文综述了掺杂CeO 2 无机盐(碳酸盐、硫酸盐)、掺杂CeO 2 金属氧化物以及掺杂CeO 2 钙钛矿复合电解质,分析了第二相对CeO 2 基电解质性能的影响。由于独特的H + /O 2−共导电性,无机盐的加入可以提高掺杂CeO 2 无机盐复合电解质的电导率。掺杂CeO 2 钙钛矿体系总电导率的提高可能是由于晶界电导率提高引起的。在掺杂CeO 2 金属氧化物体系中加入氧化物可以降低烧结温度,提高晶界电导率。以期为制备性能优异的二氧化铈复合电解质提供理论指导。
Figure 7. Morphologies and surface roughness values of (a) the initial surface and the polished surface under conditions of (b) without UV-light, (c) TiO 2 film electrode with UV-light, (d) TiO 2 film electrode with UV-light and anodic bias, (e) CeO 2 -TiO 2 composite-film electrode with UV-light and (f) CeO 2 -TiO 2 composite-film elec- trode with UV-light and anodic bias [31] 图 7. (a) 初始表面; (b) 无紫外光条件下抛光表面; (c) 有紫外光并使用用 TiO 2 薄膜电极抛光下表 面; (d) 在有紫外光和阳极偏压的 TiO 2 薄膜电极下抛光表面; (e) 有紫外光并使用 CeO 2 -TiO 2 复合 膜电极下抛光表面; (f) 有紫外光和阳极偏压的 CeO 2 -TiO 2 复合膜电极抛光表面的形貌和表面粗糙 度值 [31]
摘要:多吡咯(PPY)是一种廉价的导电聚合物,具有有效的存储容量,但其有限的溶解度限制了其生产和应用。因此,为了扩大其应用范围,多功能PPY复合材料的设计和研究引起了极大的关注。PPY/铁基复合材料是通过水热方法,聚合方法和一锅方法等方法制备的。有关PPY/铁复合材料的应用的研究主要集中在电容器,电磁波吸收材料,吸附剂,传感器,药物和催化剂等领域。,它们在超级电容器的电极材料,电磁波的吸收,重金属离子的吸附以及催化降解,展示广泛的应用前景中表现出色。随着制备技术的持续发展和应用领域的进一步扩展,PPY/基于铁的复合材料有望在更多领域中发挥重要作用。关键字:polypyrrole;准备方法;复合材料;应用区域
摘要:金属有机框架(MOF)代表了最有前途的多孔固体之一,用于控制和减少温室气体排放。研究表明,开放金属位点(OMS)与二氧化碳强烈相互作用,因此是CO 2捕获的有效结合位点。但是,许多具有OMS的MOF缺乏框架稳定性,并且通常具有较高的再生温度。为了寻求解决稳定性问题的方法,我们通过通过ZR-TCPB-COOH上的质子交换金属离子,通过ZR-TCPB-COOH在ZR-TCPB-COOM(M = M = M = Alkali/Alkaline Earth Metal)中设计了一系列。原始的MOF(ZR-TCPB-COOH)具有非常强大的框架。PSM过程不会恶化框架稳定性,而是创建与二氧化碳形成牢固键的金属结合位点。结果表明,在低CO 2压力下,使用ZR-TCPB-COOM大大增强了吸收量,并且趋势趋于增加原子数(li + 在室温下N 2上的CO 2也可以实现高吸附选择性(CO 2 /N 2 IAST选择性(15:85)= 539.5)。 这种方法提供了一种可行的方法来提高CO 2捕获能力,尤其是在低浓度下。在室温下N 2上的CO 2也可以实现高吸附选择性(CO 2 /N 2 IAST选择性(15:85)= 539.5)。这种方法提供了一种可行的方法来提高CO 2捕获能力,尤其是在低浓度下。