9. Xu, Z.; Li, H.*; Liu, Y.; Wang, K.; Wang, H.; Ge, M.; Xie, J.; Li, J.; Wen, Z.; Pan, H.; Qu, S.; Liu,
摘要 颗石藻是现代海洋中最丰富的钙化生物,是许多海洋生态系统中重要的初级生产者。它们产生碳酸钙板(颗石藻)细胞覆盖层的能力在海洋生物地球化学和全球碳循环中发挥着重要作用。颗石藻还通过产生影响气候的气体二甲基硫醚在硫循环中发挥着重要作用。颗石藻研究的主要模式生物是 Emiliania huxleyi,现名为 Gephyrocapsa huxleyi。G. huxleyi 分布广泛,占据全球沿海和海洋环境,是现代海洋中最丰富的颗石藻。对 G. huxleyi 的研究已经确定了颗石藻生物学的许多方面,从细胞生物学到生态相互作用。从这个角度来看,我们总结了使用 G. huxleyi 取得的关键进展,并研究了这种模式生物的新兴研究工具。我们讨论了研究界需要采取的关键步骤,以推动 G. huxleyi 作为模式生物的发展,以及其他物种作为颗石藻生物学特定方面模型的适用性。
FMCRD(图 2.1 显示横截面)旨在提供电动机驱动的定位,以便正常插入和拔出控制棒,以及响应反应堆保护系统 (RPS) 的手动或自动信号,以液压驱动的方式快速插入控制棒(紧急停堆)。除了液压驱动的紧急停堆之外,FMCRD 还提供电动机驱动的所有控制棒的运行,作为与液压驱动的紧急停堆不同的棒插入路径。紧急停堆所需的液压动力由存储在各个 HCU 中的高压水提供。在正常运行期间,HCU 还为相关驱动器提供冲洗水的流路。CRDH 子系统提供高压去离子水,这些去离子水经过调节和分配,为 HCU 紧急停堆蓄能器提供充电,为 FMCRD 提供冲洗水流,并在没有给水流时为 RPV 提供备用补充水。
FMCRD(图 2.1 显示横截面)旨在提供电动机驱动的定位,以便正常插入和拔出控制棒,以及响应来自反应堆保护系统 (RPS) 的手动或自动信号,提供液压驱动的快速插入控制棒(紧急停堆)。除了液压驱动的紧急停堆外,FMCRD 还提供电动机驱动的所有控制棒的运行,作为与液压驱动的紧急停堆不同的棒插入路径。紧急停堆所需的液压动力由存储在各个 HCU 中的高压水提供。在正常运行期间,HCU 还提供冲洗水流向相关驱动器的流路。CRDH 子系统供应高压去离子水,该水经过调节和分配,为 HCU 紧急停堆蓄能器提供充电,为 FMCRD 提供清洗水流,并在给水流不可用时为 RPV 提供备用补充水。
JHR 是 CEA 卡达拉什正在建造的新型材料测试反应堆。目前,堆芯的中子特性是利用 HORUS3D/N 确定性方案计算的。该方案的工业路线采用两步法,首先是 APOLLO2 MOC 格子计算,然后是基于扩散理论的 CRONOS2 堆芯计算。APOLLO3 ® 是 CEA 新的确定性计算平台,它采用了先进的计算方法。在本文中,正在使用 APOLLO3 ® 带来的新方法为 JHR 建立一个新的参考计算方案。该计算方案通过 TRIPOLI4 ® 执行的参考随机模拟进行了验证。与在 APOLLO3 ® 中模拟 HORUS3D/N 方案的方案结果相比,格子步骤的改进可以显著减少燃料元件和 Hf 控制棒的吸收率偏差。新方案的主要变化在于使用子群自屏蔽法替代精细结构等效法。这些变化与细化几何网格和 383 能级组结构有关。来自晶格台阶的压缩截面用于计算插入五根 Hf 控制棒的 2D JHR 堆芯配置的中子平衡。新的计算方案中添加了堆芯反射器超级晶胞,以产生细化的反射器截面。使用较粗的 41 组结构执行的 MOC 2D 堆芯计算保留了晶格计算的改进,并可以更好地预测反应性和反应速率。下一步将使用包括堆芯实验装置在内的带耗尽层的 3D Sn MINARET 全堆芯计算。关键词:APOLLO3 ®、JHR、确定性计算方案、共振自屏蔽方法。
莫来石 ( 3Al 2 O 3 ·2SiO 2 ) 在自然界中并不大量存在,必须人工合成。它具有许多适合高温应用的特性。莫来石的热膨胀系数非常小(因此具有良好的抗热震性)并且在高温下具有抗蠕变性。最重要的是,它不易与熔融玻璃或熔融金属渣发生反应,并且在腐蚀性炉内气氛中稳定。因此,它被用作炼铁、炼钢和玻璃工业中的炉衬和其他耐火材料。生产莫来石有两种商业方法:烧结和熔合。烧结莫来石可从蓝晶石(一种在变质岩中发现的天然矿物)、铝土矿和高岭土的混合物中获得。该混合物在高达 1600 0 C 的温度下烧结。烧结质量包含 (85–90%) 莫来石,其余主要为玻璃和方石英。将适量的氧化铝和高岭土在约 1750 0 C 的电弧炉中熔合在一起,可以制成纯度更高的莫来石。熔合产品含有 (>95%) 莫来石,其余部分为氧化铝和玻璃的混合物。
受损的肝能代谢和脂质沉积可能是导致与高果糖消耗有关的负产量。过度刺激糖酵解和糖异生途径,脂肪酸氧化途径的降低似乎是这些障碍的基础。3然而,众所周知,持续糖消耗的许多病理学作用与胃肠道(GIT)水平发生的事件有关。4我们以前的体内研究说明了饮食中果糖对糖化含量的有害影响对糖化性胁迫,以及对蛋白质消化的受损及其对微生物群和遗传性共生分类的负面影响。5多余的果糖征收促进的糖氧化反应(或促乙二醇化状态)也可能有可能有助于促成与杂种相关的代谢障碍,但其他因素是†电子补充信息(ESI)。参见doi:https://doi.org/ 10.1039/d4fo00688g
摘要:熔融生长氧化铝基复合材料因其在航空航天应用方面的潜力而受到越来越多的关注;然而,快速制备高性能部件仍然是一个挑战。本文提出了一种使用定向激光沉积(DLD)3D 打印致密(< 99.4%)高性能熔融生长氧化铝-莫来石/玻璃复合材料的新方法。系统研究了复合材料的关键问题,包括相组成、微观结构形成/演变、致密化和力学性能。利用经典断裂力学、格里菲斯强度理论和固体/玻璃界面渗透理论分析了增韧和强化机制。结果表明,复合材料由刚玉、莫来石和玻璃或刚玉和玻璃组成。随着初始粉末中氧化铝含量的增加,由于成分过冷度的减弱和小的成核过冷度,刚玉晶粒逐渐从近等轴枝晶演变为柱状枝晶和胞状结构。氧化铝含量为 92.5 mol%时显微硬度和断裂韧性最高,分别为 18.39±0.38 GPa 和 3.07±0.13 MPa·m 1/2 ;氧化铝含量为 95 mol%时强度最高,为 310.1±36.5 MPa。强度的提高归因于微量二氧化硅掺杂提高了致密性,同时消除了残余应力。该方法揭示了利用 DLD 技术制备致密高性能熔融生长氧化铝基复合材料的潜力。关键词:激光;增材制造;氧化铝;莫来石;微观结构;力学性能