摘要:增材制造 (AM) 是一种变革性的制造技术,能够根据 3D 建模数据逐层直接制造复杂部件。在 AM 应用中,功能梯度材料 (FGM) 的制造具有重要意义,因为它有可能提高多个行业的组件性能。FGM 是通过不同材料之间的梯度成分过渡制造的,从而能够设计具有位置相关机械和物理特性的新材料。本研究全面回顾了有关在 AM 中实施机器学习 (ML) 技术的已发表文献,重点介绍了基于 ML 的 FGM 制造工艺优化方法。通过对文献的广泛调查,本综述文章探讨了 ML 在解决 FGM 制造固有挑战中的作用,并涵盖了参数优化、缺陷检测和实时监控。本文还讨论了在 FGM 的 AM 制造中采用基于 ML 的方法的未来研究方向和挑战。
安全 • 展示对增材制造加工相关危害的理解 • 解释增材制造所需的个人防护设备 (PPE) • 展示对增材制造中危险通报和标签的了解 • 讨论维护和锁定/挂牌程序 基础知识 • 解释增材制造的应用并识别使用 AM 零件的行业 • 使用 ASTM 标准解释增材制造流程 • 使用 ASTM 标准展示对关键增材制造术语的了解 • 比较增材制造和传统制造的优缺点 • 展示对质量基础的了解 设计 • 讨论增材制造设计的优势和劣势 • 展示对增材制造设计注意事项的理解 • 展示对设计策略和逆向工程的了解
摘要。铂族金属 (PGM) 一直是汽车催化剂排放控制的前沿,通过提供零排放能源,可能成为净零议程背后的驱动力。文献表明,增材制造 (AM) 的多功能性可用于生产复杂的分层结构,从而增加汽车催化剂、燃料电池 (FC) 和电池中 PGM 的活性催化位点,从而提高运行效率。事实证明,PGM 负载较低的 FC 和电池的性能优于 PGM 负载较高的传统制造能源设备。AM 固有的超本地按需特性可用于破坏传统的多种能源消耗的碳密集型供应链,从而减少大气中的碳排放。AM 和 PGM 之间的协同作用极大地促进了 FC 和电池运行性能的提高,迫使一些国家开始将其能源系统迁移到环保型能源系统。
问题虽然热塑性材料广泛应用于增材制造 (AM),并已显示出强度高、重量轻和生产成本相对较低等优势,但它们也具有某些缺点,例如熔化温度较低以及在长期应力负荷下容易拉伸和变弱。由于熔丝制造 (FFF) 和熔粒制造 (FGF) 等方法只能处理热塑性材料,因此迫切需要开发新的挤出方法来处理具有低热膨胀系数 (CTE) 的热固化热固性材料,以用于高强度和高温应用。即使是当今最先进的打印机产品也存在差距,禁止使用工业和军事相关应用中常见的高级热固性复合材料。
该方法可以打印具有高分辨率、复杂几何形状以及精细细节和光滑表面的物体。特别值得注意的是,材料喷射能够以“全彩”方式打印物体,即以任意颜色和颜色渐变,并同时使用多种材料打印物体,从而实现多种颜色和材料组合。作为立体光刻技术的一种先进变体,材料喷射技术为高度精细且对美观度要求高的物体提供了更广泛的制造可能性,使其成为各个工艺领域的一项宝贵技术。材料喷射通常比其他 3D 打印技术更昂贵,因为它使用复杂的打印头技术和专门开发的材料。
介绍了一种用于增材制造 (AM) 的沉淀硬化 (PH) 不锈钢 (SS) 设计的遗传算法。研究发现,完全马氏体基体是实现最大强度的关键因素,但与早期研究不同的是,还考虑了 AM 独有的原位时效处理,从而促进了 AM 过程中富铜沉淀物的沉淀。将设计理论集成到遗传算法优化框架中,以最大限度地提高强度和可打印性。通过使用激光粉末床熔合 (LPBF) AM 制造新型合金部件,进行了实验概念验证,并将其与商业 LPBFed 17-4 PH SS 进行了比较。结果与设计策略目标一致。设计合金的优异机械性能主要归因于两个因素的结合:沉淀硬化和位错强化。沉淀硬化是提高 LPBF 新型 PH SS 屈服强度的主要原因,其原因是打印过程中位错增殖和湮没导致基体位错密度升高。
免责声明 本信息是根据美国政府机构资助的工作编写的。美国政府及其任何机构或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。