• Gamon, A.、Arrieta, E.、Gradl, PR、Katsarelis, C.、Murr, LE、Wicker, RB、Medina, F.,2021 年。采用各种增材制造工艺对 Inconel 625 合金成品进行微观结构和硬度比较。结果载于《材料》第 12 卷。https://doi.org/10.1016/j.rinma.2021.100239 • Gradl, P.、Tinker, D.、Park, A.、Mireles, O.、Garcia, M.、Wilkerson, R.、Mckinney, C.,2021 年。针对航空航天部件的稳健金属增材制造工艺选择与开发。《材料工程与性能杂志》,Springer。 https://doi.org/10.1007/s11665-022-06850-0 • Rivera, OG、Allison, PG、Jordon, JB、Rodriguez, OL、Brewer, LN、McClelland, Z., ... & Hardwick, N. (2017)。固态增材制造 Inconel 625 的微观结构和机械行为。材料科学与工程:A,694,1-9。• 图片来自 Mark Norfolk、Fabrisonic
随着计算技术的进步,增材制造 (AM) 也日趋成熟。这并非巧合,因为要利用 AM 提供的结构自由度,需要进行详细计算,并具备设计和处理三维复杂结构的能力。然而,对 AM 系统进行编程的能力并不是计算以及最近的机器学习对 AM 领域产生影响的唯一方式。事实上,近年来 AM 出现了许多创新,这些创新以不同的方式赋予了该过程不同程度的“智能”。虽然其中许多方法相互关联,但智能 AM 的几种方法却截然不同,因为它们推动了最新技术的不同方面。我们在本篇社论中的目标是重点介绍 AM 智能的三个维度,并将它们与《先进智能系统》特刊中讨论这些维度创新的文章联系起来。这些维度包括通过 AM 生产的材料和结构的进步,使其更加智能或更具功能性,工艺的进步,以生产出更好、更可靠的产品,以及使用 AM 作为比传统制造业更灵活、更有能力的生态系统的进步(图 1)。
资料来源:AFS-D 图像归功于 MELD TM Manufacturing,冷喷涂图像归功于 Spee3D,EBW-DED 图像归功于 Sciaky 和 Lockheed Martin Corporation,AW-DED 图像归功于 Gefertec,LW-DED 图像归功于 Meltio,UAM 图像归功于 Fabrisonic 和 NASA JPL,LP-DED 图像归功于 IRT Saint-Exupery 和 Formalloy 领导的 DEPOZ 项目,L-PBF 图像归功于 Renishaw plc 和 CellCore GmbH/Sol Solutions Group AG,EB-PBF 图像归功于 Wayland 和 GE Additive/Arcam。
研究了一种新方法,用于选择使用激光吹粉 - 直接能量沉积 (LBP-DED) 生产并在涡轮段中填充间隙 Ni-Al 粉末(~0.75 面积分数)的修复支撑结构设计。使用四点弯曲试验量化了段的压扁和不压扁模拟及其对支撑结构退化的影响,以确定轴向杨氏模量在平面外弯曲中的作用。生产了两种截然不同的 LBP 添加结构;金刚石晶格 (DL) - 节点和连续路径 (CP) - 非节点,并将其与未修复状态进行比较。在室温下,发现原始设备 (OE) 和 DL 支撑结构的前壁和后壁以及内部节点对杨氏模量的贡献很大,而 CP 结构的刚度明显降低。氧化在耐磨材料内部压缩应力的形成过程中起着关键作用,CP 结构的弹性模量增加了两倍,但 OE 和 DL 支撑结构的弹性模量增加较少。随着弯曲循环次数的增加,弹性模量降低,曲率半径(扁平化)随之增加。开裂在前后壁内的节点设计中最为突出,裂纹会传播到表面或耐磨晶格的底部。在原始和 CP 支撑结构中,即使循环次数达到相当高,在等效弯曲循环中也没有观察到这种退化。从弯曲弹性模量的急剧下降伴随着曲率的明显变化,可以推导出耐磨材料灾难性失效的标准。非节点设计支撑结构最适合应对使用中的扁平化/不扁平化。
• 增材制造的定义 • 增材制造的关键要素 • 增材制造零件的用途 • 使用增材制造的行业 • 计算机辅助设计 (CAD) 工具 • 增材制造工艺 – ASTM 标准 • 支持每种方法/工艺的当前技术 • 关键增材制造术语 – ASTM 标准 • 二次工艺 • 增材制造相较于传统制造的优势 • 机器质量因素 • 输入源和特性 • 文件操作 • 熔模铸造 • 槽光聚合 • 材料挤出 • 材料喷射 • 薄板层压 • 定向能量沉积 • 增材制造业务和经济学 • 最终产品/用途的工艺 • 与增材制造加工相关的危害 • 个人防护设备 • 危害通报和标签 • 安全数据表的使用
新冠疫情清楚地揭示了全球供应链中的薄弱环节。最近,乌克兰入侵和随之而来的禁运带来了新的供应挑战,影响了航空航天和国防行业广泛使用的原材料的运输。增材制造已证明它可以通过使用点生产、敏捷生产能力和原材料节约来缓解其中一些痛点。增材制造对供应链产生积极影响的一个明显例子是,多家公司迅速转向生产个人防护设备和医疗部件以抗击疫情。通过利用数字设计、互联网络和接近使用点的生产,公司消除了影响传统供应链的惯性和障碍。
1)Wohlers, T.:Wohlers Report 2005, p.157, Wohlers Associate Inc., CO, USA(2005 年) 2)https://www.aligntech.com/solutions(访问日期 2020/02/24) 3)Imagawa, Edagawa 等:Phys. Rev. B, 82(11),115116(2010 年) 4)Niino, Hamajima 等:Biofab, 3(3),034104(2011 年)
对于 5 轴机床,除了三个线性轴外,还有两个旋转和/或摆动轴。这为多维运动控制策略奠定了基础,并允许喷嘴相对于构建平台移动。通过适当定位打印头以及部件本身,可以为构建过程最佳地沉积材料。例如,在材料挤出中,这可以消除大多数支撑结构和特殊支撑材料。由于 SINUMERIK 的高动态性能和精度,可以实现更高的构建速度、更高效的材料利用率以及最后但并非最不重要的一点,更好的表面质量。
增材制造 (AM) 是一种使用多种方法最终应用材料层并制造产品的技术 (Ford & Despeisse, 2016; Ford, Mortara & Minshall, 2016)。尽管近年来增材制造技术得到了扩展,但其在制造业中的应用已有几十年 (Ford, Mortara, et al., 2016)。自 20 世纪 80 年代末以来,增材制造已从简单的产品设计(专注于原型设计和定制)发展到如今收入达数十亿美元并大规模生产消费品和工业产品 (Cotteleer, 2014)。预测显示,到 2020 年,增材制造市场将接近 100 亿美元,其中汽车、航空航天和医疗行业将处于领先地位 (Cotteleer, 2014)。目前,制造商可以使用多种增材制造技术,尽管这些技术的最终产品具有类似的分层结构,但工艺却大不相同。国际标准化组织 (ISO)/美国材料与试验协会 (ASTM) 标准 52900:2015 (ASTM F2793) 将 AM 工艺分为七类:粘合剂喷射、定向能量沉积、材料挤出、材料喷射、粉末床熔合(包括几种烧结方法)、板材层压和桶光聚合(表 1,第 36 页)。不仅机器和工艺技术存在很大差异,材料机会也存在很大差异。常用的原材料包括各种塑料和金属,但使用活组织、玻璃和复合材料的新发展正在进入 AM 世界(Cotteleer,2014 年)。与 AM 相比,更常见的是减材制造,它只是涉及从更大的供应中去除材料以生产商品(Ford 和 Despeisse,2016 年)。典型的减材制造涉及使用车床、计算机数控 (CNC) 机床和钻头或锯子根据规格去除材料 (Langnau, 2011)。减材制造的历史比 AM 还要悠久
根据欧洲铝业协会 [1] 开展的一项研究,欧洲乘用车的铝含量将从 2022 年的 205 公斤增加到 2030 年的 256 公斤。对美国汽车也做出了非常相似的预测 [2] 。因此,内燃机相关铸件需求的下降将在很大程度上被电动汽车对新型铝基部件的需求所抵消,例如电机外壳、BEV 和 PHEV 电池外壳组件和不同的结构件。预计对压铸制造的汽车结构件的需求将从 2021 年的 820 万件大幅增加到 2030 年的 2500 万件 [3] 。所引用的研究一致认为,预计超过 50% 的铝基零件将通过压铸方法成型,特别是高压压铸 (HPDC)。这些研究并未考虑到巨型和千兆高压压铸的快速普及。因此,未来几年对 HPDC 零件的需求预计会比预测值高得多。