摘要 - 薄膜压电微机械超声传感器(PMUTS)是一个越来越相关且经过充分研究的领域,随着技术的继续成熟,它们的生物医学重要性一直在增长。本评论论文简要地讨论了他们在生物医学使用中的历史,简单地说明了他们的原理,并阐明了这些设备的材料选择。主要是讨论了PMUT在生物医学行业中的重要应用,并展示了在每个应用程序中取得的最新进展。涵盖的生物医学应用包括超声检查,例如超声成像,超声疗法和流体感应的常见历史用途,但还具有新的和即将到来的应用,例如药物输送,光声成像,热声学成像,生物透镜和内置通信。通过在不同应用程序中包括设备比较图表,该评论旨在通过为最近的研究工作提供基准来帮助与PMUTS合作的MEMS设计师。此外,它还讨论了生物医学领域的PMUT所面临的当前挑战,当前的,可能的未来研究趋势以及PMUT开发领域的机会,以及分享作者在整个技术状态下的意见和预测。该评论的目的是对这些主题进行全面介绍,而不会深入研究现有文献。
我们提出了一种方法和设置,可提供血液氧合(通过定量光声成像)和血流动力学(通过超声多普勒)的互补三维(3D)图像。所提出的方法不含标签,利用了血液诱导的波动,并在仅有256个元素的稀疏阵列上实施,并以市售的超声电子功能驱动。我们首先实施3D光声波动成像(PAFI)来对鸡胚胎进行图像,并获得血管形态的全部视频图像。我们同时获得具有可比图像质量的3D超声功率多普勒。然后,我们引入了多光谱光声波动成像(MS-PAFI),并证明它可以提供吸收的光学能量密度的定量测量,并具有完全可见性和增强的对比度,与常规的延迟延迟式延迟式多光谱摄影成像相比。我们最终展示了MS-PAFI之间的协同作用和互补性,该MS-PAFI提供了3D定量氧合(SO 2)成像和3D超声多普勒,该成像提供了有关血流动力学的定量信息。MS-PAFI代表了基于模型的反转的有希望的替代方案,其优势是通过使用直接处理方案解决所有可见性人工制品而没有事先和正则化。
土星最大的卫星之一土卫二拥有广阔的地外海洋,这片海洋正日益成为未来探索假定生命的研究计划的热点。本文提出了一种针对土卫二外海洋的新型生物探索概念设计,根据最先进的传感器和机器人平台(陆地深海研究中使用的技术),重点研究各种尺寸的生物(从单细胞到多细胞和类似动物)的假定存在。特别地,我们专注于基于光声成像和被动声学以及分子方法的直接和间接生命探测能力的结合。这种以生物为导向的采样可以伴随同时进行的地球化学和海洋学测量,以提供与外海洋探索和理解相关的数据。最后,我们描述了这种多学科监测方法目前如何通过有线(固定)观测站及其相关的移动多参数平台(即自主水下和遥控航行器,以及爬行器、探测车和仿生机器人)在陆地海洋中实现,以及如何将其改进的设计用于外海洋探索。关键词:外海洋——土卫二——深海技术——自主水下航行器——爬行器——低温机器人。天体生物学 20,xxx–xxx。
光声计算机断层扫描(OAT),也称为光声计算的Tomography,是一种非侵入性成像方式,可积极用于临床乳房成像和其他生物医学应用。1 - 8燕麦的独特特征是能够基于与发色团浓度和组织内的发色团浓度和氧化状态相关的内源性光学对比度产生图像的能力,而无需电离辐射和空间分辨率丢失,通常与纯粹的光学技术相关的纯粹光学技术,例如纯粹的光学技术。1,9这允许进行组织代谢和血管生成的成像,这些代谢和血管生成已被鉴定为在肿瘤生长和进展中起关键作用。7,10因此,理想地将光声成像定位为在体内解决这两个标志。2 - 8,10因此,优化且经过验证的燕麦系统可以成为治疗乳腺癌的强大工具。通过评估肿瘤微举行密度和血液氧合,它可以使肿瘤侵袭性的初步评估以告知治疗计划和预后。它还可以随着时间的推移监测肿瘤对治疗的反应。然而,为了实现其全部诊断潜力,燕麦应具有提供有关光吸收系数真实值的定量信息的能力,该信息与分子浓度成正比。7、11、12
光声 (PA) 成像是一种新兴的混合成像技术,可以在增加穿透深度的情况下以高特异性和微米级分辨率非侵入性地识别组织。它采用脉冲激光作为激发源,并收集超声波响应以重建光吸收图,以反映组织区域的结构和功能细节。根据激发光和接收声音的排列方式,光声成像可以是多尺度的,从人体器官和小动物全身到单细胞等微观精细结构。PA 成像的血管特异性允许神经血管耦合神经电压成像,但迄今为止大多数工作都是通过血管和血氧波动而不是直接测量来询问神经元电压活动。在这里,我们提出了一种新颖的策略,该策略采用全场光声脑检测平台,该平台配有光稳定的电压敏感染料,可直接监测完整的癫痫小鼠脑中长时间的电压动态。通过研究大脑区域之间的连通性,可以揭示电传导通路及其方向性,这些方向性通过快速时间可视化来指示。所提供的证据突出了所提出的方法对癫痫和其他电压相关疾病的诊断和映射的潜力。
在不进行侵入性近场操作的情况下从远场获取场景的亚波长信息是波工程学中的一个基本挑战。然而,众所周知,波在复杂介质中的停留时间决定了波对扰动的敏感度。现代编码孔径成像仪利用复杂介质提供的自由度 (dof) 作为天然多路复用器,但并未认识到并利用将感兴趣的物体放置在复杂介质外部或内部之间的根本区别。在这里,我们表明,只需用混响被动混沌腔将亚波长物体封闭在其远场中,就可以将定位亚波长物体的精度提高几个数量级。我们认为深度学习是一种合适的抗噪工具,可以提取编码在多路复用测量中的亚波长定位信息,实现远超训练数据中可用的分辨率。我们在微波领域展示了我们的发现:利用简单可编程超表面的配置自由度,我们使用仅强度的单频单像素测量,在混沌腔内沿弯曲轨迹定位亚波长物体,分辨率为 λ = 76。我们的研究结果可能在光声成像以及基于回响弹性波、声音或微波的人机交互方面具有重要应用。
背景:含有高Z组元素的纳米辐射式感应器已被广泛报道为放射疗法的潜在候选者。但是,特定的调节机制尚不清楚,需要紧急解决生物降解性。方法:我们合成了含丝绸Sericin的纳米组件,pt@bi 2 SE 3 -RGD(PBR)。pbr的抗肿瘤和生物选择效应。使用双侧肿瘤模型评估了PBR的免疫放射治疗作用。结果:将光声成像引导的PBR与放射疗法相结合,提高了抗PD-L1治疗的效率,从而引发了强大的免疫反应。重要的是,含丝丝毒素的PBR可以用酸性pH和过表达的MMP-9对局部细胞内环境反应,并崩溃成BI,SE和散射的PT纳米颗粒(NPS),并最终从体内清除。结果还表明,PBR可能作用于AREG/EGFR/BCL-2途径,从而诱导放射性敏感性凋亡。结论:在这项研究中综合的多功能,可生物限制的PBR纳米组装表现出了放射敏化,与PD-L1免疫阻滞结合使用,可以抑制原发性和远端肿瘤。因此,作为协同放疗和免疫疗法的敏化剂,PBR可能在肿瘤学中具有广泛的临床应用。
摘要:实体瘤是全球癌症相关死亡的主要原因,其特点是肿瘤生长迅速、局部和远处转移。癌症治疗失败主要与肿瘤微环境的复杂生物学有关。基于纳米粒子 (NPs) 的方法已显示出克服实体癌病理生理特征所造成的限制的潜力,从而能够开发用于癌症诊断和治疗的多功能系统,并有效抑制肿瘤生长。在不同类型的 NPs 中,基于二维石墨烯的纳米材料 (GBN) 因其出色的化学和物理特性、易于进行的表面多功能化、近红外 (NIR) 光吸收和可调节的生物相容性,代表了开发用于治疗实体瘤的治疗诊断工具的理想纳米平台。本文回顾了基于石墨烯、氧化石墨烯 (GO)、还原氧化石墨烯 (rGO) 和石墨烯量子点 (GQD) 的纳米系统合成的最新进展,用于开发用于光声成像引导的光热化疗、光热 (PTT) 和光动力疗法 (PDT) 的治疗诊断 NP,应用于实体肿瘤破坏。本文讨论了每类 GBN 使用这些纳米系统的优势,同时考虑到不同的化学性质和多功能化的可能性,以及生物分布和毒性方面,这些方面是将其转化为临床应用的关键挑战。
何斌的主要研究兴趣包括电生理神经成像、脑机接口和神经调节。他在系统层面上为神经工程领域做出了开创性的原创贡献,旨在加深我们对大脑的理解,并通过工程创新来管理神经系统疾病。他的创新有助于将脑电图 (EEG) 从一维传感技术转变为现代三维动态功能性脑成像模式,用于映射和成像时空脑活动和功能连接。这项工作对更好地了解大脑功能和功能障碍以及降低医疗成本具有重大影响。他在基于 EEG 的脑机接口方面的工作取得了重大进展。他的团队是第一个让人类驾驶无人机的人,也是第一个控制机械臂在三维空间中连续移动、伸手和抓握物体的人,仅使用从非侵入性脑电图中解码的“思想”。这项工作大大提高了非侵入性脑机接口的功能和应用。他的研究小组还创新了具有高空间分辨率的组织电特性磁声成像和经颅聚焦超声神经调节,以空间精度和深脑穿透对中枢神经系统信息进行编码。他的研究对神经成像、神经接口和神经调节在治疗神经系统疾病方面具有直接影响——神经系统疾病是导致残疾的主要原因和第二大死亡原因。
摘要本评论文章概述了金纳米颗粒(AUNPS)在生物医学中的应用,重点是它们在癌症治疗,药物递送,诊断和组织再生中的使用。AuNP的独特光学特性允许光热治疗(PTT),而其柔性表面化学能够通过靶向配体和治疗剂进行功能化。广泛的研究证明了使用近红外(NIR)激光照射在各种肿瘤模型中AuNP介导的光热消融的有效性。通过具有转铁蛋白,叶酸和透明质酸等配体的AUNP平台的工程来实现主动肿瘤靶向。将AUNP与化学疗法和免疫疗法结合在一起已显示出协同的治疗益处。此外,AuNP已被广泛探索为药物和基因的携带者。通过采用刺激反应性聚合物,脂质和介孔二氧化硅,研究人员可以精确控制货物在细胞内的释放。在诊断领域,AUNP的等离子特性已被利用用于光声成像,并且在哨兵淋巴结的映射中已证明了成功的临床翻译。此外,AUNP构建体克服了与血脑屏障(BBB)相关的挑战,从而有效地向中枢神经系统(CNS)递送了挑战。在再生医学中,功能化的AUNP与生长因子结合使用时,在刺激造成骨,肌发生,血管生成和组织再生等过程中表现出显着的潜力。此外,发现它们通过免疫调节和促进血运重建来加速伤口愈合。此外,使用基于AUNP的水凝胶和支架为组织工程应用提供了至关重要的结构支持。AUNP平台的多功能性为肿瘤学,药物输送,诊断和再生疗法领域的挑战提供了有希望的解决方案。正在进行的优化工作具有将这些策略从实验室转化为临床应用的巨大希望。