• Produced using Helicon's patented process • Molecular-level mixing of nano-aluminum fuel and polymer binder • Extremely rapid nanoparticle combustion • Maximum energy release from aluminum fuel • Safe to handle, store, use • Replacement for conventional fuel ingredients that have unwanted behavior such as sensitivity, toxicity, aging, poor performance
摘要:在聚合物材料行业中,热固体和相关复合材料在橡胶和塑料的生产中发挥了重要作用。其中的一个重要子集是带有碳增强的热固性复合材料。碳填充剂和纤维的掺入可为聚材料提供改善的电气和机械性能,以及其他好处。然而,由于其棘手的性质,共价交联的热销网络提出了回收和再生的重大挑战。引入玻璃体材料为生产可生物降解和可回收热的途径开辟了新的途径。碳增强玻璃二聚体复合材料是用于具有吸引人物理特性的高性能,持久材料,可回收和加工的能力以及对刺激唯一反应的其他特征。本文总结了过去几年中碳增强玻璃体复合材料的发展。首先,提供了玻璃二聚体的概述和用于制备碳纤维增强玻璃体复合材料的方法。由于此类复合材料的玻璃二聚体性质,重新处理,治愈和回收是可行的方法,可以极大地延长其使用寿命。这些方法得到了彻底的解释和总结。结论是我们开发基于碳的玻璃体复合材料的预测。
玻璃纤维增强复合材料 (GFRC) 在现代生活中无处不在。在任何时候,人们可能都站在 GFRC 组件 20 英尺范围内,无论是汽车、船、风力涡轮机还是住宅复合甲板。尽管它们无处不在,但目前处理使用寿命结束时的 GFRC 的方法并不理想。这些复合材料通常最终进入垃圾填埋场,占用大量空间并浪费了在新产品中重复使用这些材料的潜力。近年来,由于社交媒体平台的发展,人们对这一问题的关注度显著提高。风力涡轮机叶片在垃圾填埋场中广为流传的照片是可再生能源产生的罕见垃圾的缩影,也是试图为实际问题寻找真正解决方案的行业的挫折和创新的缩影。如果我们希望继续使用 GFRC,短期内需要采取权宜之计,例如将复合材料倾倒在垃圾填埋场或将废物用作水泥窑的替代燃料。但从长远来看,这些选择并不能为报废复合材料提供生态甚至人道主义负责的解决方案。2019 年,美国能源部向 Carbon Rivers(田纳西州诺克斯维尔)提供了一项小企业创新研究补助金 (SBIR),以探索复合材料循环经济的解决方案,主要关注风力涡轮机叶片。该公司成立于 2017 年,旨在利用
由于燃料成本上升和环境法的出台,汽车行业被迫制造更轻、更省油的汽车。当采用铝基复合材料等轻质金属来减轻汽车总重量时,燃料消耗也会减少。铝基复合材料因其卓越的机械和摩擦学特性而被广泛应用于汽车和航空运输业。本文讨论了铝基复合材料在汽车应用中的重要性及其阻尼特性。由于工程应用需要机械稳定性和性能,因此振动是不可接受的。阻尼能力是指材料在周期性应力作用下管理机械振动的能力。为了减少当今环境中的机械振动,需要具有卓越机械和阻尼能力的材料。复合材料是一种更好的选择,因为它们具有更好的机械性能和阻尼能力。文献深入探讨了影响铝基复合材料的不同方面以及汽车应用中阻尼研究的必要性。最后,利用 VOSviewer 以科学计量学方法报告了铝基复合材料阻尼特性的研究进展。Scopus 引擎搜索发现 1329 篇与阻尼和振动研究相关的文献。随后,对 2010 年至 2022 年的 628 篇研究文献进行了专门的统计分析。
在 1988 年 4 月 27-29 日于内华达州斯帕克斯举行的第九届复合材料:测试与设计研讨会上发表。研讨会由 ASTM 高模量纤维及其复合材料委员会 D-30 赞助。联合技术公司的 Samuel P. Garbo 担任研讨会主席,并担任本出版物的编辑。
美国材料与试验协会 (ASTM) 授权复印用于内部、个人或教育课堂用途,或特定客户的内部、个人或教育课堂用途的物品,但须向版权许可中心支付适当的费用,地址为:222 Rosewood Drive, Danvers, MA 01923,电话:508-750-8400,在线:http://www.copyright.com/。
第七届复合材料疲劳与断裂研讨会于 1997 年 5 月 7-8 日在密苏里州圣路易斯举行。会议由 ASTM 复合材料委员会 D-30 和 ASTM 疲劳与断裂委员会 E-8 赞助。研讨会的主要目的是提供一个论坛,介绍和讨论复合材料疲劳和断裂的最新发展。特别要求提交描述复合材料技术以下领域的实验和分析研究的论文:失效机制、无损评估、环境影响、预测方法、测试方法开发和影响。五个会议共提交了 21 篇论文。会议由美国宇航局兰利研究中心的 A. T. Nettles 和 M. K. Cvitkovich、Alient Tech Systems 的 D. Cohen、美国陆军导弹司令部的 J. E. Patterson、阿拉巴马大学亨茨维尔分校的 M. D. Lansing、南伊利诺伊大学卡本代尔分校的 T. Chu 和 MERL 的 R. H. Martin 主持。在研讨会期间,T. K. O'Brien 被授予 Wayne Stinchcomb 纪念奖。根据研讨会期间的演讲评估结果,M. K. Cvitkovich 被授予研讨会最佳论文演讲奖。复合材料用于许多商业、军事和航空航天结构。这些应用大多涉及循环载荷、异物冲击或热机械载荷。优化这些结构的设计需要全面表征复合材料对各种负载场景的响应。具有成本效益的表征涉及分离特定感兴趣现象的测试方法和可以将测试方法结果与实际结构行为相关联的模型的组合。本卷中包含的论文涉及复合材料疲劳和断裂行为的许多重要方面。本卷中包含的论文分为疲劳和断裂、环境考虑、影响和展望部分。这些论文包括有关聚合物、金属和陶瓷基复合材料的论文。疲劳和断裂部分包括与微观结构效应、损伤、预测工具和测试方法开发有关的论文。环境考虑部分重点关注温度和其他环境因素对复合结构长期耐久性的影响。最后,“透视”部分提供了复合材料的艺术视角。在“影响”部分,论文讨论了影响响应、损伤形成以及使用 NDE 技术作为预测工具。
飞机重量过大无疑降低了其飞行能力,从而危及机组人员的生命。通过引入基于智能的技术改进航空航天用先进复合材料的开发,克服了这一问题。为了有力地实现这一目标,我们采用以下方式进行:描述和确定航空航天用先进复合材料开发减少的原因;设计传统的 SIMULINK 模型来改进航空航天用先进复合材料的开发;开发智能规则库以尽量减少航空航天用先进复合材料开发减少的原因;训练 ANN 以开发智能规则库以有效地减少航空航天用先进复合材料开发减少的原因;开发一种算法来实施该过程;设计一种基于智能的技术改进航空航天用先进复合材料开发的 SIMULINK 模型;验证和证明使用和不使用基于智能的技术减少航空航天用先进复合材料开发减少的原因的百分比改进。得到的结果是,传统的高开发和制造成本导致航空航天应用的先进复合材料开发成本降低 35%。另一方面,当将智能化技术融入系统后,该成本同时降低到 30.35%,从而使航空航天应用的先进复合材料开发效率提高 4.65%,而传统的性能和行为预测困难导致航空航天应用的先进复合材料开发效率降低 20%。另一方面,当将智能化技术融入系统后,它自动将性能和行为预测困难导致航空航天应用的先进复合材料开发效率降低 17.34%。最后,当将智能化技术融入系统后,航空航天应用的先进复合材料开发效率提高 2.66%。