第七届复合材料疲劳与断裂研讨会于 1997 年 5 月 7—8 日在密苏里州圣路易斯举行。此次研讨会由 ASTM 复合材料委员会 D-30 和 ASTM 疲劳与断裂委员会 E-8 主办。研讨会的主要目的是为复合材料疲劳与断裂新进展提供一个展示和讨论的平台。特别要求提交描述复合材料技术以下领域实验和分析研究的论文:失效机理、无损评估、环境影响、预测方法、测试方法开发和影响。五个分会场共计展示 21 篇论文。会议由 NASA 兰利研究中心的 AT Nettles 和 MK Cvitkovich、Alient Tech Systems 的 D. Cohen、美国陆军导弹司令部的 JE Patterson、阿拉巴马大学亨茨维尔分校的 MD Lansing、南伊利诺伊大学卡本代尔分校的 T. Chu 和 MERL 的 RH Martin 主持。在研讨会期间,TK O'Brien 被授予 Wayne Stinchcomb 纪念奖。根据研讨会期间的演讲评估结果,MK Cvitkovich 被授予研讨会最佳论文演讲奖。复合材料用于许多商业、军事和航空航天结构。这些应用大多涉及循环载荷、异物冲击或热机械载荷。优化这些结构的设计需要全面表征复合材料对各种载荷情景的响应。经济有效的表征涉及分离特定感兴趣现象的测试方法和可以将测试方法结果与实际结构行为相关联的模型的组合。本卷中的论文讨论了复合材料疲劳和断裂行为的许多重要方面。本卷中的论文分为疲劳和断裂、环境考虑、影响和展望部分。这些论文包括关于聚合物、金属和陶瓷基复合材料的论文。疲劳和断裂部分包含与微观结构效应、损伤、预测工具和测试方法开发有关的论文。环境考虑部分重点关注温度和其他环境因素对复合结构长期耐久性的影响。冲击部分论文讨论了冲击响应、损伤形成以及使用 NDE 技术作为预测工具。最后,展望部分提供了复合材料的艺术视角。
第七届复合材料疲劳与断裂研讨会于 1997 年 5 月 7-8 日在密苏里州圣路易斯举行。会议由 ASTM 复合材料委员会 D-30 和 ASTM 疲劳与断裂委员会 E-8 赞助。研讨会的主要目的是提供一个论坛,介绍和讨论复合材料疲劳和断裂的最新发展。特别要求提交描述复合材料技术以下领域的实验和分析研究的论文:失效机制、无损评估、环境影响、预测方法、测试方法开发和影响。五个会议共提交了 21 篇论文。会议由美国宇航局兰利研究中心的 A. T. Nettles 和 M. K. Cvitkovich、Alient Tech Systems 的 D. Cohen、美国陆军导弹司令部的 J. E. Patterson、阿拉巴马大学亨茨维尔分校的 M. D. Lansing、南伊利诺伊大学卡本代尔分校的 T. Chu 和 MERL 的 R. H. Martin 主持。在研讨会期间,T. K. O'Brien 被授予 Wayne Stinchcomb 纪念奖。根据研讨会期间的演讲评估结果,M. K. Cvitkovich 被授予研讨会最佳论文演讲奖。复合材料用于许多商业、军事和航空航天结构。这些应用大多涉及循环载荷、异物冲击或热机械载荷。优化这些结构的设计需要全面表征复合材料对各种负载场景的响应。具有成本效益的表征涉及分离特定感兴趣现象的测试方法和可以将测试方法结果与实际结构行为相关联的模型的组合。本卷中包含的论文涉及复合材料疲劳和断裂行为的许多重要方面。本卷中包含的论文分为疲劳和断裂、环境考虑、影响和展望部分。这些论文包括有关聚合物、金属和陶瓷基复合材料的论文。疲劳和断裂部分包括与微观结构效应、损伤、预测工具和测试方法开发有关的论文。环境考虑部分重点关注温度和其他环境因素对复合结构长期耐久性的影响。最后,“透视”部分提供了复合材料的艺术视角。在“影响”部分,论文讨论了影响响应、损伤形成以及使用 NDE 技术作为预测工具。
Although the application of fiber-reinforced concrete (FRC) beams turns back to a few decades ago (Adhikary & Mutsuyoshi, 2006 ; Masuelli, 2013 ; Soltanzadeh et al., 2015 ), significant efforts also have been made to increase the strength and ductility of concrete in construction and building structures since sustainable infrastructure is cru- cial for economic development (Aldwaik &阿德利,2016年)。与其他纤维增强的复合结构(çelik&König,2022; Rafiei&Adeli,2017b; Shafighfard等,2021)一样,最近已证明FRC结构是拥有比正常混凝土更具特殊耐药性和强度的能力。能够预测钢纤维 - 增强混凝土(SFRC)束的结构行为是研究人员在攻击其性能时面临的众多挑战之一(Rafiei等,2017; Singh,2016; Venkateshwaran&Tan,2018)。在众多的弯曲参数中(Gribniak等,2012; Gribniak&Sokolov,2023),延展性比引起了研究人员的注意,因为它的能力反映了结构元素对弯曲载荷的反应。另一个重要的弯曲度量是弯曲载荷能力(峰值负载),该指标已通过数值模拟,实验研究和机器学习(ML)基于基于的预测技术进行了研究。一些研究人员已经对SFRC梁进行了数值和/或分析研究,以降低与实验研究相关的劳动和/或材料成本(Jeong&Jo,2021;Júnior&Parvin,2022)。tan等。Yang等。 (2020)Yang等。(2020)纵向钢筋比率和残留拉伸强度是SFRC梁柔性性能的参数研究中考虑的典型变量。使用纤维来增强拉伸强度并不比连续加固在改善混凝土束的力矩容量方面更有效,但是与普通的RC梁相比,纤维增强型会增加僵硬和强度(Mobasher等人,2015年)。(2022)进行了SFRC材料特性对弯曲性能的影响的参数分析,发现弯曲延展性受到RC梁中高体积分数的影响。对具有不同纤维纵横比,方向和梁尺寸的SFRC梁的三维(3D)模型表明,由于弯曲增强的峰值载荷增加了较高的分布纤维,因此在拉伸应力方向上定向纤维。此外,具有较低纤维增强比的较小梁显示出较高的峰值载荷(Al-Ahmed等,2022)。实验研究通常被认为是数值工作(Pereira等,2020)的组成部分,以验证它们提供的结果。
采用先进激光剪切干涉技术进行航空航天无损检测 John W. NEWMAN Laser Technology Inc. 1055 W. Germantown Pike, Norristown, PA 19403 电话:610-631-5043,传真:610-631-0934 电子邮件:jnewman@laserndt.com 网址:www.laserndt.com 摘要:自 1986 年首次用于美国生产飞机项目以来,剪切干涉无损检测已经取得了长足的发展。剪切干涉激光干涉成像方法测量由于施加的应力工程变化而导致的测试结构变形。由此产生的 Z 轴应变分量变化揭示了航空航天结构中脱粘、分层、核心缺陷和冲击损伤等亚表面缺陷的图像。剪切干涉无损检测提供高吞吐量、经济高效的生产力增强、改进的制造工艺和质量。数字 CCD 相机、PC 和小型高功率固态激光器的发展已显著提高了剪切干涉仪和系统的性能。剪切干涉仪目前广泛用于各种飞机,包括 F-22、F-35 JSF、空中客车、赛斯纳 Citation X、雷神 Premier I 和 NASA 航天飞机。本演讲将简要介绍剪切干涉无损检测技术的背景以及生产和便携式机载剪切干涉检测技术和应用的最新发展。关键词:航空航天无损检测、剪切干涉无损检测、蜂窝结构、无损检测、脱粘、损坏、分层 1.0 背景 在当今竞争激烈的航空航天环境中,一种高效的高速检测技术至关重要。剪切干涉无损检测为在制造和现场对新飞机进行无损检测提供了一种更好、更快的方法。为了最大限度地提高燃油经济性和性能,工程师们已经从铆接和粘合的铝结构转向实心复合层压板、带有蜂窝或泡沫芯的复合夹层板以及胶带缠绕的复合结构(如机身)。传统的无损检测方法,例如超声波 (UT) C 扫描,可能无法为这些新材料和几何形状提供最佳的缺陷检测能力,并且速度很慢,典型的吞吐量仅为 10 平方英尺/小时。此外,制造复杂复合结构的过程需要一种快速检查的方法来提供过程控制反馈,并以尽可能低的成本确保质量和可靠性。在当今的许多航空航天项目中,激光剪切干涉技术提供了很大一部分解决方案。
如今,鉴于人类面临的主要问题,日益严重的环境污染和对可持续廉价能源的需求代表了重要的研究问题。因此,设计和开发能够集成到高效的环境处理和能源生产产品/技术中的先进材料是全世界不断研究的课题。在这种情况下,光催化材料被认为是主要用于水处理的有吸引力的候选材料,但也用于通过光电解水分解生产氢气。光催化技术利用光能作为驱动力,在光催化材料的存在下,通过矿化从(废)水中去除持久性有机污染物(例如染料、农药和药物)。具有光催化活性的材料种类繁多,例如半导体(金属氧化物、金属硫化物/硒化物等)、半导体基异质结(微/纳复合结构、二元或三元混合结构等)、钙钛矿、过渡金属尖晶石型混合氧化物、金属有机骨架(MOF)、水凝胶和废物衍生或模板材料。因此,本期主题主要指开发创新、先进和可操作的光催化技术,这些技术使用新的高效、环保、可持续和可重复使用的光催化材料。本期包括八篇文章,重点介绍先进的光催化材料在水处理和通过水分解反应制氢中的应用。以下是本期论文的简要摘要,考虑到光催化过程中使用的材料类型:金属氧化物(单组分、双组分或三组分混合结构)、钙钛矿和石墨相氮化碳(gC 3 N 4 )基半导体。总共八篇文章中,有三篇 [ 1 – 3 ] 重点介绍了 TiO 2 基光催化剂,因为 TiO 2 已被广泛研究,是一种具有相对较高的光催化活性和优异的化学稳定性的低成本环境友好型材料。在参考文献 [ 1 ] 中,使用刮刀技术在三种不同的基材上沉积 TiO 2 (Degussa P25) 薄膜:显微玻璃 (G)、掺杂氟的氧化锡 (FTO) 和铝 (Al)。在 UV-A、UV-B + C 和 VIS 辐照(七种场景)下,对两种污染物酒石黄 (Tr) 染料和啶虫脒 (Apd) 杀虫剂测试了样品的光催化性能,辐照时间为 8 小时。为了优化光催化效率,研究了几个参数(照射源、总辐照度值、光子通量、催化剂基材和污染物类型)的影响。结果表明,在导电(Al)基底上制备的样品,使用三个 UV-A 和一个 VIS 光源(13.5 W/m 2)的混合光源,可以获得更高的光催化效率(Tr 为 63.8%,Apd 为 82.3%)。在参考文献 [ 2 ] 中,作者报道了一种新型 Ba(II)/TiO 2 –MCM-41 复合材料,该复合材料使用掺杂 Ba 2+ 的 TiO 2 分散在 MCM-41 分子筛上。在紫外光照射(60 分钟)下,Ba(II)/TiO 2 –MCM-41 (91.7%) 在降解对硝基苯甲酸 (4 × 10 − 4 M) 时的光催化效率增强,这被认为是由于 Ba 2+ 离子和 MCM-41 的存在,这有助于降低带隙能量并促进 TiO 2 的轻松分散,从而形成一种表面积为
GERVASI HERRANZ 多功能氧化物和复合结构实验室,巴塞罗那材料科学研究所 ICMAB-CSIC,UAB 校区,E-08193 Bellaterra,加泰罗尼亚,电话:+34 93 580 18 53(分机 357)传真:+34 93 580 57 29;gherranz@icmab.cat 我是一名凝聚态物理学家,在巴塞罗那材料科学研究所 (ICMAB) 从事材料科学、量子传输和纳米光子学研究,该研究所隶属于西班牙国家研究委员会 (CSIC)。我于 2008 年获得现职,最近晋升为 CSIC 科学研究员。加入 CSIC 之前,我曾在 Unité Mixte Physique-CNRS Thalès 担任了四年(2004-2008 年)的博士后,在 Albert Fert 教授(2007 年诺贝尔物理学奖获得者)的指导下从事自旋电子学研究。我的研究。过渡金属氧化物是一类强关联系统,其潜力促使我的研究寻找电子学和光子学领域的基础发现和应用途径。这些材料以其丰富多样的物理特性而著称,这些特性来自于不同能量尺度的微妙平衡。这使得它们特别容易受到外界扰动的影响,从而引起不同电子相(磁性、铁电性或超导性)之间的转变。沿着这些思路,我的科学活动导致了与 LaAlO 3 /SrTiO 3 界面处氧化物量子阱(QW)中的量子传输相关的基础发现。这涉及到对这些 QW 的基本理解(PRL 2007、Nat. Mater. 2008、PRL 2017)以及在非常规晶体取向上对这些 QW 的开创性发现(Sci. Rep. 2012、PRL 2014)。这些意想不到的 QW 导致了与低维超导和 Rashba 自旋轨道耦合(Nat. Comms. 2015、Nat. Mater. 2019)相关的进一步发现以及不寻常的光传输(PRL 2020)的发现。我致力于深入了解许多其他氧化物,并与其他团队合作,例如,对 SrTiO 3 表面 QW 的子带结构(Nature 2011)或某些锰氧化物中的拓扑霍尔效应(Nat. Phys. 2019)的基本知识做出了贡献。与此同时,我的好奇心也一直伴随着对光与物质相互作用的研究,特别是在光子和等离子体晶体中(ACS Nano 2011、Nanoscale 2012、Opt. Express 2018)。我对这个领域的兴趣促使我对锰氧化物中极化子动态传输的理解做出了重要贡献(PRB 2009、PRB 2014),这导致了自旋相关极化子传输的发现(PRL 2016)。与这个领域相关的发现是我提出锰氧化物作为量子计算潜在材料的基础,本项目概述了这一观点。我的活动。在过去的 10 年里,我指导了七篇博士论文,还有一篇目前正在指导中。在同一时期,我指导过两名博士后(一名在 2011-11 年,一名在 2017-2020 年担任 MSCA-IF 研究员)。自 2009 年以来,我发表了 20 多次受邀演讲(包括 2009 年和 2015 年 APS 三月会议、2013 年 MRS 春季会议、2018 年 E-MRS 秋季会议、2010 年和 2019 年 SPIE 光子学会议、2012 年 MMM-Intermag 会议、2019 年和 2020 年 META 会议)和 60 多次口头交流。我是光子学(Royal Soc. Of Chem. 编辑,2013 年,ISBN:978-1-84973-653-4)和 2DEG(《氧化物自旋电子学》,Pan Stanford Publishing,2019 年,ISBN 9814774995)领域的两本书章节的合著者。我曾组织过 MRS 春季和 EMRS 研讨会(MRS 春季 2011 和 2013 以及 E-MRS 春季 2015),并参与组织了 2011 年国际氧化物电子学校(法国卡尔热斯)。我曾在以下学校授课