拓扑电荷在一系列物理系统中发挥着重要作用。具体来说,对磁性材料中实空间拓扑对象的观测主要限于 skyrmion - 具有幺正拓扑电荷的状态。最近,实验中报道了更多具有不同拓扑的奇异状态,如反 skyrmion、meron 或 bimeron 以及 3D 状态,如 skyrmion 弦、手性浮子和霍普夫子。沿着这些思路,实现具有高阶拓扑的状态有可能为拓扑磁性及其自旋电子学应用的研究开辟新的途径。本文报道了在范德华磁体 Fe 3 − x GeTe 2 (FGT) 的剥离薄片中观察到的此类自旋纹理(包括 skyrmion、skyrmionium、skyrmion bag 和 skyrmion sack 状态)的实空间成像。这些复合 skyrmion 可能来自浓缩成条状域结构的种子环状状态,这证明了在剥离的 2D 磁体薄片中实现具有任意整数拓扑电荷的自旋纹理的可能性。形成机制的普遍性质促使人们在已知和新磁性材料中寻找复合 skyrmion 状态,这可能会揭示更丰富的高阶拓扑对象光谱。
摘要:通过从宽频率范围内捕获光谱数据以及空间信息,高光谱成像 (HSI) 可以检测到温度、湿度和化学成分方面的细微差异。因此,HSI 已成功应用于各种应用,包括用于安全和防御的遥感、用于植被和农作物监测的精准农业、食品/饮料和药品质量控制。然而,对于碳纤维增强聚合物 (CFRP) 的状态监测和损伤检测,HSI 的使用是一个相对未触及的领域,因为现有的无损检测 (NDT) 技术主要侧重于提供有关结构物理完整性的信息,而不是材料成分。为此,HSI 可以提供一种独特的方法来应对这一挑战。本文以欧盟 H2020 FibreEUse 项目为背景,介绍了使用近红外 HSI 相机将 HSI 用于 CFRP 产品无损检测的应用。详细介绍了三个案例研究中的技术挑战和解决方案,包括粘合剂残留物检测、表面损伤检测和基于 Cobot 的自动化检测。实验结果充分证明了HSI及相关视觉技术在CFRP无损检测方面的巨大潜力,特别是满足工业制造环境的潜力。
摘要 - 在锂离子(锂离子)电池模型的领域,由于其简单性,长期以来,单个粒子模型(SPM)被认为是在嵌入式应用中迎来物理启发模型(PIMS)时代的有希望的减少订单模型(ROM)候选者。然而,在高负载电流下,标准SPM在计算电池的端子电压时表现出较差的精度,从而使其不合适,可以作为植物模型在状态估计任务中。对文献的显着电解质增强SPM的全面评估表明,当前的解决方案在数学上是棘手的或过于简单的。对于电解质中的离子浓度,跨越计算复杂性和数学障碍的边界的众所周知的二次近似模型显示出时间性能较差,尤其是在当前的集电极接口上。在这项工作中,我们保留了二次近似模型的空间动力学,同时使用系统识别技术为其时间动力学提出了一种新颖的方法。通过使用相关子系统的线性近似值,我们确定了每个电极区域内电解质中锂离子单位面积的摩尔数的离散时间传递函数,从而提高了电解质浓度的时空精度。然后,我们使用新的系统识别电解质动力学增强标准SPM,以达到电解质增强的复合单粒子模型(EECSPM)。最后,与现有的最先进的面前相比,我们将表现出EECSPM的出色性能,从而代表了在实时应用程序中使用PIMS的具体目标。
Anita Gupta, DO, MPP, GMP, PharmD, FASA Expertise: Anesthesiology, Pain, Health Policy, Pharmacology, General Management Term: 1 2/18/2020 – 9/30/2 0 25 Full Clinical Professor, Medicine University of California Riverside School of Medicine 900 University Avenue Riverside, California 92521 Adjunct Assistant Professor Johns Hopkins School of Medicine Department of Anesthesiology and Critical马里兰州巴尔的摩护理21205
摘要 - 遵守道路规则对于自动驾驶汽车的安全操作至关重要。以前的工作表明,可以通过基于车辆可及的搜索空间来限制搜索空间来加快符合规则的运动计划。我们提出了一种算法,以使车辆在粘附在线性时间逻辑规范时可以达到的状态过度陈述。通过将模型检查整合到可及性分析中,我们可以尽早排除许多不合规的状态。我们只需要在必要时在语义上分配可及的集合,以决定规范的有效性。与现有方法相比,这大大减少了计算时间。我们在录制的现实世界情景中基准了我们的方法,以展示其实时功能。
大多数刺激性反应部分是通过酯和酰胺键直接将吊坠链束缚在聚合物链上,或者在较小程度上,或较小的程度。18 - 22在SP的领域,即装饰SP的取代基的类型,例如,绘制电子或电子捐赠,在基于SPS的聚合物的刺激敏感性方面具有潜在的显着意义。23 - 25然而,尚未研究位于SPS芳族部分(区域异构体)不同位置的酯组的影响。实际上 - 据我们最大的知识,只有两项研究探讨了苯甲基部分中可聚合基团的取代基位置变化,从而导致拉伸诱导的诱导的环环和异构化的不同水平的嵌入式SP单位的异构化。11,26然而,设计基于SPS的单体使SP部分和可聚合手柄的酯组通过亚甲基组( - CH 2 - )连接到Chromene部分。批判性地,未探索这些设计对所得的照片和pH响应性能的影响。有趣的是,经常探索硝基取代的SP(NO-2-SP),这很可能是由于产生的红色ED电子吸收以及提高电子吸引人的量子效率的增强。27,28
将纳米Si颗粒与多种碳组成(硅碳复合材料)混合在一起是克服硅离子电池(LIB)中阳极中有机成分的弱点的常见方法之一。石墨是一种碳同种型,具有非常好的有组织的结构和高电导率,因此它成为复合/c的最理想和实用的碳材料。椰子壳木炭废物用作石墨前体,在1200°C的温度下,镍催化剂石墨化过程3小时(C-NI)。在这项研究中,矫形四乙基(TEOS)用作硅酮的来源。 进行水解过程以形成SIO 2/c过渡阶段,其每克C-Ni(来自椰子壳木炭的石墨粉)的Teos mol的变化为0.045 mol/g,0.09 mol/g,0.09 mol/g和0.18 mol/g。 接下来,在800°C的温度下,使用热还原法和在650°C的温度下使用雄激素还原方法来降低SIO 2 /c转变阶段。< /div> < /div> 在样品中获得的XRD的结果降低了雄伟的含量,显示了Si相的存在。 显微镜电子扫描图像的结果还支持降低镁热的Si/C TM样品的存在。 拉曼光谱分析结果表明,在C-Ni样品,Si/C T和Si/C TM上的比率I D/I G分别为1,169、1,012和1,260。 在C-NI和S/C TM样品中,带有SI/C TM样品结果的电导率测试的电导率值为12,8695(s/cm),高于C-NI,仅为4,53170(最多)。在这项研究中,矫形四乙基(TEOS)用作硅酮的来源。进行水解过程以形成SIO 2/c过渡阶段,其每克C-Ni(来自椰子壳木炭的石墨粉)的Teos mol的变化为0.045 mol/g,0.09 mol/g,0.09 mol/g和0.18 mol/g。接下来,在800°C的温度下,使用热还原法和在650°C的温度下使用雄激素还原方法来降低SIO 2 /c转变阶段。< /div> < /div>在样品中获得的XRD的结果降低了雄伟的含量,显示了Si相的存在。显微镜电子扫描图像的结果还支持降低镁热的Si/C TM样品的存在。拉曼光谱分析结果表明,在C-Ni样品,Si/C T和Si/C TM上的比率I D/I G分别为1,169、1,012和1,260。在C-NI和S/C TM样品中,带有SI/C TM样品结果的电导率测试的电导率值为12,8695(s/cm),高于C-NI,仅为4,53170(最多)。关键字:阳极,石墨,硅碳复合材料,lib,椰子废物
Liu 等 [36] 在 1950 ℃ 和 50 MPa 压力的 SPS 过 程中,发现随着 TiB 2 的添加量由 5 mol% 增至 30 mol% ,复合陶瓷的硬度降低,断裂韧性增加。 除裂纹偏转和 TiB 2 的钉扎效应使 B 4 C 晶粒细化 ( 从 1.91 μm 减至 1.67 μm) 外,两相间位错的产生, 是 B 4 C 陶瓷增强、增韧的次要原因,其在陶瓷断 裂前吸收能量,造成局部强化 [37–38] 。研究发现, 添加 20 mol% TiB 2 时,复合陶瓷的相对密度为 97.91% ,维氏硬度为 (29.82±0.14) GPa ,断裂韧性 为 (3.70±0.08) MPa·m 1/2 。 3.1.2 Ti 单质引入 与直接添加 TiB 2 相比,在烧结过程中原位反 应生成 TiB 2 可以在较低的烧结温度下获得更高 的密度和更好的机械性能。 Gorle 等 [39] 将 Ti-B( 原 子比 1:2) 混合粉体以 5 wt.% 、 10 wt.% 和 20 wt.% 的比例加入到 B 4 C 粉末中,研磨 4 h 后通过 SPS 在 1400 ℃ 下获得致密的 B 4 C 复合陶瓷。由于 WC 污染,获得了由被 (Ti 0.9 W 0.1 )B 2 和 W 2 B 5 的细颗粒 包裹的 B 4 C 颗粒组成的无孔微结构。当 Ti-B 混合 物的量从 5 wt.% 增至 20 wt.% 时,烧结活化能从 234 kJ·mol −1 降至 155 kJ·mol −1 。含 5 wt.% Ti-B 混 合物的 B 4 C 复合材料的最大硬度为 (3225±218) HV 。由于 TiB 2 的原位形成反应是高 度放热并释放大量能量的自蔓延反应,因此,原 料颗粒界面间的实际温度预计高于 SPS 烧结温 度,同时,液相 W 2 B 5 的形成润湿了 B 4 C 表面, 有助于降低 B 4 C 晶粒的界面能,并加速了沿晶界