杂种优势描述的是杂交植株相对于其亲本的产量和稳健性增加,是现代作物育种的基石 1 。除双亲杂种优势外,在玉米、马铃薯和苜蓿中还观察到同源多倍体渐进杂种优势 (APH),当来自四个不同祖父母的基因组片段组合时,会产生额外的杂种优势效应 2 。APH 尚未在商业育种中得到充分利用,因为减数分裂会重新分配基因型,并且无法生产受益于 APH 的基因一致的种子。先前在拟南芥和水稻中建立的“有丝分裂而非减数分裂”(MiMe) 系统可产生克隆的、未减数的配子 3 – 7 ,但尚未在双子叶作物中建立或在设计多倍体基因组工程中进行测试。在这里,我们建立了番茄多倍体基因组设计,通过两个不同杂交亲本产生的克隆配子的杂交,实现了四种预定义基因组单倍型的可控组合。我们着手在番茄中建立 MiMe 系统,以可控的方式产生克隆配子。基于对番茄减数分裂突变体的基本了解(补充说明 1),我们发现可以通过 SlSPO11-1、SlREC8 和 SlTAM 的突变在自交系番茄中建立功能性 MiMe 系统(图 1a-c、扩展数据图 1 和 2、补充图 1-16 和补充表 1-4)。我们在三种杂交番茄基因型中实施了 MiMe 系统,包括 Moneyberg-TMV ⨯ Micro-Tom (MbTMV-MT) 模型杂交品种、枣番茄商业杂交品种‘Funtelle’和串番茄商业杂交品种‘Maxeza’(图 1a-c)。我们鉴定出两个独立的 MbTMV-MT、三个独立的 Funtelle 和三个独立的 Maxeza 品系,它们在 SlSPO11-1、SlREC8 和
脑机接口作为大脑和外部设备信息交互的渠 道 , 是前沿脑科学和重要脑疾病诊治的底层核心 工具 . 脑机接口是生物技术和信息技术交叉融合 的颠覆性技术 , 其技术研发和落地应用是一个复 杂的系统工程 , 包括神经电极、芯片、算法、通讯、 植入等核心器件和关键技术 , 涵盖微电子、神经 科学、材料学、计算机科学、临床医学、伦理学 等多学科交叉 . 因此 , SCIENCE CHINA Informa-
根据飞行安全基金会进近和着陆事故减少工作组的调查结果和建议,我们检查并分析了航空安全报告系统 (ASRS) 不稳定进近和着陆事件的事件报告数据。本研究的目的是调查报告的导致美国商业航空不稳定进近和着陆运营事件的人为因素。结果显示,不稳定进近不太可能通过复飞合规性做出响应。二项逻辑回归分析揭示了 ASRS 编码的人为因素与不稳定进近继续着陆而不是复飞合规性的可能性之间的关联存在描述性差异。对机组事故报告叙述的内容分析可能允许识别 ASRS 未明确编码的其他促成人为因素,例如决策。此类调查的结果有可能为有效的复飞合规性培训设计提供信息。
摘要 :青贮复水玉米粒 (RC) 已被用于提高营养价值和促进农场储存。本研究评估了壳聚糖和乳酸微生物接种剂对青贮复水玉米微生物学、发酵特性和损失、化学成分、体外降解和有氧稳定性的影响。采用完全随机设计,使用了 40 个实验筒仓来评估以下处理:1) 对照 (CON):不含添加剂的 RC 青贮饲料;2) 壳聚糖 (CHI):含 6 g/kg 干物质 (DM) 壳聚糖的 RC 青贮饲料;3) 布赫纳乳杆菌 (LB):每克鲜重用 5 × 10 5 个 L. buchneri 菌落形成单位 (CFU) 的 RC 青贮饲料; 4) 植物乳杆菌和乳酸干酪杆菌 (LPPA):RC 每克鲜重青贮饲料中接种 1.6 × 10 5 个植物乳杆菌和 1.6 × 10 5 个乳酸干酪杆菌。添加剂增加了乳酸菌数量以及乳酸和丙酸浓度,减少了霉菌和酵母数量以及气体和发酵损失,提高了干物质回收率。与接种微生物的青贮饲料相比,CHI 青贮饲料的 pH 值、氨氮浓度和发酵损失均较低,而乙酸浓度较高。此外,CHI 和 LB 降低了青贮饲料有氧暴露后的 pH 值和温度。虽然各种处理对 RC 的营养价值影响不大,但 CHI 提高了青贮饲料的有氧稳定性,减少了发酵损失。 关键词 : 发酵概况、仁粒青贮饲料、乳酸菌、L. buchneri。
摘要:烷基锡团簇在纳米光刻中用于制造微电子器件。烷基锡 Keggin 家族是整个元素周期表中 Keggin 簇中独一无二的一个;其成员似乎倾向于低对称性的 β 和 γ 异构体,而不是高度对称的 α 和 ε 异构体。因此,烷基锡 Keggin 家族可能为 Keggin 簇的形成和异构化提供重要的基础信息。我们合成并表征了一种具有四面体 Ca 2 + 中心的新型丁基锡 Keggin 簇,其完整结构为 [(BuSn) 1 2 (CaO 4 )- (OCH 3 ) 12 (O) 4 (OH) 8 ] 2+ ( β -CaSn 12 )。该合成是一个简单的一步法。广泛的溶液表征包括电喷雾电离质谱、小角X射线散射和多核( 1 H、 13 C 和 119 Sn)核磁共振,表明β -CaSn 12 基本上是纯相并且稳定的。这与之前报道的Na中心类似物不同,后者总是形成β和γ异构体的混合物,并且容易相互转化。因此,这项研究澄清了之前对Na中心类似物的复杂光谱和晶体学表征的混淆。密度泛函理论计算显示以下稳定性顺序:γ -CaSn 12 < γ -NaSn 12 < β - CaSn 12 < β -NaSn 12。β类似物总是比γ类似物更稳定,这与实验一致。本研究的显著成果包括罕见的四面体 Ca 配位、无 Na 烷基锡簇(对微电子制造很重要)以及对由不同金属阳离子构成的 Keggin 家族的更好理解。■ 简介
针对配电网长期尺度预测偏差问题,提出一种基于智能变压器供电区域边一致性算法的云边协调快速调节策略。云对边缘变压器供电区域簇进行全局初始优化分配,簇对边缘区域进行二次协同优化分配。建立基于一致性算法的簇内快速功率交互模型,以调度费用微增长率为一致性变量,使得簇调节量最优分配到各个变压器供电区域,使得所有变压器供电区域总调度费用最小。仿真算例验证了本文基于智能站簇边一致性算法的云边协同快速控制策略的有效性。
可变形配准是纵向和基于人群的图像分析的基础。然而,由于婴儿时期大脑发育迅速,精确配准同一受试者的纵向婴儿大脑 MRI 图像以及不同受试者的横截面婴儿大脑 MRI 图像具有挑战性。在本文中,我们提出了一种可循环使用的深度神经网络来配准婴儿大脑 MRI 图像。我们提出的方法有三个主要亮点。(i)我们使用脑组织分割图而不是强度图像进行配准,以解决生命第一年脑组织对比度快速变化的问题。(ii)单个配准网络以一次性方式训练,然后多次循环应用于推理,从而可以逐步恢复复杂的变形场。(iii)我们还在配准网络中提出了自适应平滑层和组织感知反折叠约束,以确保估计变形的生理合理性,而不会降低配准精度。与最先进的配准方法相比,实验结果表明,我们提出的方法实现了最高的配准精度,同时仍保持了变形场的平滑度。我们提出的配准网络的实现可在线获得。
摘要 — 目的:开颅手术是切除部分头骨,以便外科医生进入大脑并治疗肿瘤。进入大脑时,组织会发生变形,并可能对手术结果产生负面影响。在这项工作中,我们提出了一种新颖的增强现实神经外科系统,将从 MRI 获得的术前 3D 网格叠加到手术期间获得的大脑表面视图上。方法:我们的方法使用皮质血管作为主要特征来驱动刚性和非刚性 3D/2D 配准。我们首先使用特征提取器网络来生成概率图,并将其输入到姿势估计器网络以推断 6-DoF 刚性姿势。然后,为了解释大脑变形,我们添加了一个非刚性细化步骤,该步骤使用基于物理的约束将其表述为形状模板问题,有助于将变形传播到皮质下水平并更新肿瘤位置。结果:我们在 6 个临床数据集上回顾性地测试了我们的方法,并获得了较低的姿势误差,并使用合成数据集表明可以在皮质和皮质下水平实现相当大的脑移位补偿和较低的 TRE。结论:结果表明,我们的解决方案实现了低于实际临床误差的准确度,证明了我们的系统在实际应用中的可行性。意义:这项工作表明,我们可以使用单个摄像机视图提供通过开颅手术观察到的 3D 皮质血管的连贯增强现实可视化,并且皮质血管为执行刚性和非刚性配准提供了强大的功能。