ef伏特转运蛋白在革兰氏阴性细菌中具有抗性。在这里,我们通过抑制其主要的RND转运蛋白Acrab-tolc来确定和化学优化基于吡idyl吡啶基吡嗪的共体,从而增强大肠杆菌的抗生素活性。抗性大肠杆菌突变体和结构生物学分析的表征表明,该化合物结合了Acrb l frotomer的跨膜结构域上的独特位点,由质子继电器涉及的关键催化残基衬里。分子动力学模拟表明,抑制剂通过AICRB L原始物中仅存在的通道从细胞质量中获取这种结合袋。因此,我们的工作揭示了一类变构EF液泵抑制剂,这些抑制剂可能通过防止RND泵的功能催化循环来起作用。
摘要:抗菌耐药性(AMR)已成为公共卫生中的一个主要问题,导致2019年估计有495万人死亡。由大量和反复使用抗生素引起的选择性压力导致细菌菌株部分甚至完全抵抗已知的抗生素。amr是由多种机制引起的,其中多种液体的(过度)表达泵的(过度)表达起着核心作用。多泡液泵是跨膜转运蛋白,自然地通过革兰氏阴性细菌表达,能够挤出并赋予对几类抗生素的耐药性。针对它们将是恢复各种治疗选择的有效方法。文献中已经描述了许多EF伏特泵抑制剂(EPS);但是,迄今为止,尚未参加临床试验。本评论介绍了八个对Escherichia Coli或铜绿假单胞菌的活跃家庭。结构 - 活性关系,化学合成,体外和体内活性以及药理特性。还对其结合位点及其作用机理进行了相对分析。
1汉诺伊科学技术大学生命科学系,越南科学技术学院,18 Hoang Quoc Viet,Cau Giay,Cau Giay,Hanoi 10072,越南2 Chu Van An,12 Chu Van An,Hanoi 11114,Hanoi 11114,越南3号,越南3学院,科学和技术学院。 Giay,Hanoi 10072,越南4天然产品学院化学研究所,越南科学技术学院,1H大楼,18 Hoang Quoc越野,Cau Giay,Cau Giay,Hanoi 10072,Hanoi 10072,Hanoi 5 CNRS,Inrae,Vetagrosup,UCBL,UCBL,UniversitédeLyon,43 Boulevard du Novembre,F-69622法国Villeurbanne,法国 *通信:pham-hoang.nam@usth.usth.edu.vn;电话。: +84-916073217
Tigecycline(TGC),第三代四环素被认为是针对多药抗性细菌的最后防御。最近对TGC的抗药性率提高了,动物细菌中的人限制药物构成了重大的全球健康挑战。已经提议过度使用第一代四环素(TET)和动物中的苯酚与TGC耐药性发展有关。在当前的研究中,我们旨在确定四环素(TET)和氯霉素(CHL)过度暴露对TGC敏感性的影响。k的TET和CHL敏感的分离株。肺炎E和E。大肠杆菌分别暴露于四环素和氯霉素的浓度,直到观察到TET和CHL MIC的4倍。使用盘扩散和肉汤稀释方法测试了几种抗菌剂的易感性变化。编码主要ACRAB调节剂的基因的遗传改变,包括ACRR(ACRAB的阻遏物),RAMR(RAMA的阻遏物),SOXR(Soxs的阻遏物)(SOXS)。肺炎和LON(MARA的蛋白水解降解),Marr(Mara的阻遏物),ACRR和SOXR。大肠杆菌。使用逆转录 - 定量聚合酶链反应(RT-QPCR)方法测量ACRB的表达水平。对两种抗生素的细菌过度暴露(15至40个选择周期)显着降低了E的TET耐药性(R)和E的CHL-R变体的敏感性。大肠杆菌(n = 6)和k。肺炎(n = 6),包括几组抗体,包括Tigecycline(分别为4-16次和8-64次)和喹诺酮。约有58%的变异(n = 7)在Acrab调节剂中带有遗传改变,包括RAMR(移率突变/基因座缺失),MARR(L33R,A70T,G15S,G15S氨基酸取代)和LON(L630F,L630F,LON,LON,FRAMESHIFT变化),这些变化与Acrivbb upnculation相关。我们的研究证明了氯霉素和四环素暴露在选择突变体中的能力,这些突变体揭示了Tigecycline抗性/降低的敏感性,主要是由主动排出机制介导的。在某些菌株中未改变的ACRB表达水平表明其他外排泵或基于非效能的机制在多抗生素耐药表型的发展中的贡献。
明尼苏达州明尼阿波利斯市宜人街207号的化学系 321 11 Church St SE, Minneapolis, Minnesota, United States of America 12 13 d Department of Medicinal Chemistry, University of Minnesota, 208 Harvard Street SE, 14 Minneapolis, Minnesota 55454, United States of America 15 16 e Department of Pharmacology, University of Minnesota, 321 Church St SE, Minneapolis, 17 Minnesota, United States of America 18 19 * Corresponding author 20
抑制素是一种二聚体糖蛋白,由𝛼和两个亚基组成。针对二聚体抑制素的免疫主要用于辅助生殖技术中以诱导超排卵。但免疫反应性的游离抑制素𝛼亚基的具体功能仍不清楚。在本研究中,使用针对游离抑制素𝛼亚基(Pro-𝛼 N-𝛼 C)的新型单克隆抗体进行了两项主要研究(第一项研究排卵,另一项研究受精)。排卵研究重复进行了 6 次,共涉及 48 只 4-6 周龄雌性 CD1 小鼠。在每个重复中,4 只对照小鼠接受 PMSG/hCG 治疗,4 只治疗小鼠接受含有 mAb-游离𝛼亚基的 PMSG/hCG。受精研究重复进行了 3 次,共涉及 22 只雌性 CD1 小鼠。在每个重复实验中,对照组和治疗组分别有 4、3 和 4 只小鼠。在这两项研究中,雌性小鼠腹膜内注射 50 单位/毫升孕马血清促性腺激素 (PMSG),单独注射或与 400ug mAb-Free 𝛼 亚单位联合注射,然后在 48 小时后注射 50 单位/毫升人绒毛膜促性腺激素 (hCG)。注射后 17 小时,所有组的雌性小鼠都被处死,并从输卵管中收集排卵的卵母细胞。对于受精研究,使用雄性 CD1 小鼠的新鲜精子进行体外受精。结果表明,与对照组相比,游离抑制素 𝛼 亚基的中和显著降低了排卵率 47.29%,而与对照组相比,免疫中和显著提高了受精率 55.68%,囊胚发育率 43.85%。这项研究表明,与二聚体抑制素的免疫中和效果相反,针对游离抑制素 𝛼 亚基的免疫会减少排卵。作者假设游离 𝛼 亚基可能起到抑制素拮抗剂的作用,与抑制素竞争与其共受体的结合。关键词:激活素、β-聚糖、受精、免疫中和、抑制素、排卵
铜绿假单胞菌中的耐药性已通过多种机制介导,它们中排出泵介导的耐药性是耐药性最重要的机制之一。MEXAB-OPRM外排泵,能够识别和排出细菌细胞中各种结构无关的化合物,赋予对铜绿假单胞菌中广泛的抗生素的抗性。本研究的目的是筛选在印度传统医学中使用的药物,以发现一些能够抑制铜绿假单胞菌中的Mexab-Oprm泵的有效化合物,并研究具有抗抗性抗生素的特征性外排泵抑制剂的协同作用(MDR)抗生素(MDR)抗生素(MDR)菌株。在本研究中使用了100个临床分离株,四个敲除和1个MTCC-741标准菌株。所有100个临床分离株均已处理用于抗生素易感性测定法和ETBR琼脂卡特轮测定法以测定MDR表型。总共筛选了40种植物,以存在具有外排泵抑制活性的化合物。用三种不同的抗生素进一步探索了表现出EPI活性的植物的协同作用。十种植物提取物已显示出相当大的EPI活性,并且在10个活性提取物中,只有一种末期佳肴果实的甲醇提取物显示出与A组(环丙沙星,四环素和氯霉素)的协同活性。T. chebula果实提取物的分馏和纯化提供了乙酸乙酯,该乙酸酯与A组抗生素以及显着的EPI活性一起显示了协同活性。本研究的结果得出的结论是,乙酸酯是铜绿假单胞菌中过度表达Mexab-Oprm外排泵的有效EPI,可以与耐药组A抗生素一起使用,以抗多药抗性P. eruginosa。
1。O'Neill,吉姆。 恢复了反穆斯特抗药性(2014年)。 2。 Boucher,H。W.和Al。 临床。 感染。 dis。 48,1-12(2009)。 3。 Ha,K。P.和Al。 MBIO 11,(2020)。 4。 Clarke,R。S.和,K。P.和Edwards,A。M. Biorxiv。 预印(2021)5。 Flow,C。S. Q. bioorg。 但是。 化学。 27,114962(2019)。O'Neill,吉姆。恢复了反穆斯特抗药性(2014年)。2。Boucher,H。W.和Al。 临床。 感染。 dis。 48,1-12(2009)。 3。 Ha,K。P.和Al。 MBIO 11,(2020)。 4。 Clarke,R。S.和,K。P.和Edwards,A。M. Biorxiv。 预印(2021)5。 Flow,C。S. Q. bioorg。 但是。 化学。 27,114962(2019)。Boucher,H。W.和Al。临床。感染。dis。48,1-12(2009)。 3。 Ha,K。P.和Al。 MBIO 11,(2020)。 4。 Clarke,R。S.和,K。P.和Edwards,A。M. Biorxiv。 预印(2021)5。 Flow,C。S. Q. bioorg。 但是。 化学。 27,114962(2019)。48,1-12(2009)。3。Ha,K。P.和Al。 MBIO 11,(2020)。 4。 Clarke,R。S.和,K。P.和Edwards,A。M. Biorxiv。 预印(2021)5。 Flow,C。S. Q. bioorg。 但是。 化学。 27,114962(2019)。Ha,K。P.和Al。MBIO 11,(2020)。 4。 Clarke,R。S.和,K。P.和Edwards,A。M. Biorxiv。 预印(2021)5。 Flow,C。S. Q. bioorg。 但是。 化学。 27,114962(2019)。MBIO 11,(2020)。4。Clarke,R。S.和,K。P.和Edwards,A。M. Biorxiv。预印(2021)5。Flow,C。S. Q.bioorg。但是。化学。27,114962(2019)。27,114962(2019)。
Divus venosus(DV)是一种胚胎血管,载有胎盘含氧血液到胎儿右心。它从脐静脉分支,横穿肝脏,然后排入下腔静脉(IVC)[1]。在胎儿循环中,氧气的血液从胎盘通过脐静脉流向DV [2]。DV含有平滑肌,弹性结缔组织和DV起源的括约肌,可作为胎儿电阻器,可抵抗胎盘血流。虽然尚不清楚缺乏静脉导管(ADV)的真实发生率,但它在大约0.6%的胎儿中被鉴定为胎儿超声心动图[3]。在ADV的情况下,脐静脉的插入可能被描述为肝内或肝外脑外[4]。在大多数患者中,脐静脉直接排入右心庭,但是,脐静脉可能
含氮的芳族杂环化合物已被研究在各种ELDS中具有很好的应用。Quinoxaline是一种芳族杂环化合物,其结构由苯环和吡嗪环组成,将其凝结在一起。已研究了4,5个喹啉衍生物具有许多生物学活性,包括抗结核,抗菌,抗癌,抗内部抗药性,抗疟疾和抗呼吸症活性。5二氧素衍生物作为T2DM处理具有很大的潜力,其中包括DPP -4抑制剂,GLP -1受体激动剂,PPAR G和SUR EMONIST,A淀粉酶抑制剂和 - 葡萄糖苷酶抑制剂。4 - 11此外,异氧唑是一类叠氮唑,其结构含有氮和氧原子,中有含元素的芳族环。12这类化合物已被证明在药物化学中起重要作用,