永恒的现在。研究这些民族文学的布罗尼斯拉夫·马林诺夫斯基和多萝西·李发现,西方人的感知比率已被彻底改变。希腊人赋予字母表一种新的表达方式,具有视觉和语义意义。例如,埃及表意文字直接与特定的感性声音和动作相关,具有独特的图形符号。另一方面,希腊字母表的矩阵可以用来翻译外来的影响,就像它们对我们来说一样。我们在我们的文化中自动地来回查看和寻找关系,而不改变原始字母字符的形式和数量(二十四)。它成为第一种将知识从一种文化转移到另一种文化的翻译方式。特罗布里恩德人只对体验一个人的当前本质感兴趣。他感兴趣的是他的纱线、他的石刀、他的船,因为这些物体与原始说话者和特定的感官事件分离。口头传统在今天仍然存在。没有“新”或“旧”船,盛开的山药或腐朽的。没有过去或未来,只有存在的本质,它非常逐渐地存在于书面泛欧洲传统中,并将情感和现在设定为西方的具体知识姿态。特罗布里恩德人与因纽特人一样,直接体验到一种永恒感,即西方的知识姿态。我们永远被“解放”了,所以他永远不会被诸如“谁创造了创造者”之类的问题所困扰。部落词语的共鸣魔力和亲属关系网。英语,事实上大多数西方语言,通过时态暗示现实只能包含在过去、现在和未来的概念中,而这种概念由平面、统一、同质的语言专业化所产生,这相当不协调地暗示着人类能够像神一样,呈现印刷品。口语逐渐衰落。抄写(或手稿)文化
目的:在Solve-RD项目(https://solve-rd.eu/)内,欧洲智力残疾,远程医疗,自闭症和先天性异常智力网络旨在调查基于Clinvar案例的未解决病例的外来分析是否可以建立其他诊断。我们介绍了“ Clinvar低悬一起”重新分析的结果,先前分析失败的原因以及学习的经验教训。方法:来自欧洲智力残疾,远程医疗,自闭症和先天性异常的欧洲参考网络收集的第一个3576个外来的数据(1522个证券和2054个亲戚)通过Solve-rd Consortium重新分析,通过评估单核位变种和临床插入式(cline clinient and Simplerient and Silkerions and Silkeriptions and in Simples和delersert ins in to noce)和多种插入率(clience intery contence in Cline)和多种插入率(涉及单核)。根据频率,基因型和遗传模式和重新解释的频率,基因型和模式进行过滤。结果:我们确定了59例(3.9%)的因果变异,其中50例也由其他诉讼和9例导致了新的诊断,突出了解释挑战:在第一次分析时与人类疾病相关的基因的变异,或者误导了局部局部局部变化(变异型),该变异属于人类疾病的变化(变异)(变化型)。 lters,低等位基因平衡或高频)。结论:“ Clinvar低悬挂水果”分析代表了一种从外显子组测序数据中恢复因果变异的有效,快速且简单的方法,这也有助于减少诊断僵局。©2023作者。由Elsevier Inc.代表美国医学遗传与基因组学院出版。这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。
标题:塑料通过基于等离子体的基于等离子体的解聚,利用水性和气态排放暴露于工作夏季的陈述塑料的增殖促成了巨大的环境损害,不仅损害了动物栖息地,而且还会损害食物链,从而通过释放毒素而成为公共健康风险(例如染料和修饰符)包含塑料中。通过垃圾填埋场处理塑料和能源回收,分别是由于半衰期和温室气体排放而不是实用的解决方案。机械回收是一种解决方案,但受聚合物类型的限制并产生较低质量的塑料。目前,塑料升级,塑料向更高价值产品的转化,由于高热量要求(用于热解)是能量密集型的。等离子体为塑料的解聚提供了一种更绿色的方法,还提供了升级的可能性,以制造高价值的产品,例如高级塑料和燃料。非热等离子体尤其是能源效率的,并且在空气上的运行意味着实施不需要外来的进料气体才能运行。在这里,血浆用于基本上通过细分将聚合物解构到其前体单体。意识到这种等离子体视觉的关键是优化气相和表面化学。与液体中聚合物去聚合有关的表面化学反应令人信服,因为环境是天然散热器和血浆本身输入反应性物种的储层。此外,自组织过程可以在局部大大增强反应性物种的局部电场和密度。自组织效应尚未充分探索。这项工作的目的是研究和表征来自聚合物粉末,颗粒的液体悬浮液的相互作用以及与低频等离子体射流产生的血浆和DC 1 ATM发光的血浆相互作用的分解产物。在这里,我们旨在阐明如何使用发射光谱和FTIR推断出的等离子体参数,包括表面自组织,诱导流体流动和液滴发射效应分解过程。
着丝粒缺陷、染色体不稳定性和伴随的 cGAS-STING 通路激活与纤维化标志物增加相关,表明 cGAS-STING 通路与人类疾病的免疫调节有关(Paul 等人,2022 年;Contreras-Galindo 等人,2023 年)。该研究课题促进了对人类疾病中 cGAS-STING 通路激活的多学科理解。此外,它旨在强调 cGAS-STING 调节剂的进展,为治疗自身免疫性疾病和癌症的药物研发工作做出贡献。环鸟苷酸环化酶 (cGAS) 对核外 DNA(无论是自身的还是外来的)的检测在人类健康中起着至关重要的作用(Dvorkin 等人,2024 年)。当 cGAS 与核外 DNA 结合时,它会刺激第二信使环磷酸鸟苷 (cGMP) 的产生,从而激活干扰素基因刺激物 (STING)。STING 激活会触发各种细胞反应,包括干扰素调节因子 3 (IRF3) 的激活和干扰素的释放 (Hopfner and Hornung,2020 年)。cGAS-STING 通路激活可导致多种结果,例如细胞周期停滞、细胞凋亡和免疫系统的募集 (Decout 等人,2021 年)。最近的研究结果表明,染色体分离缺陷可激活系统性硬化症中的 cGAS-STING 通路,可能导致异常的自身免疫反应 (Paul 等人,2022 年)。研究人员正在努力寻找特定且有效的 cGAS-STING 抑制剂,以抑制自身免疫性疾病中的 cGAS-STING 通路。最近的一项研究表明,黄酮类化合物对 cGAS-STING 通路有效(Li 等人,2023 年),此外,黄酮类化合物还具有很强的抗炎活性(Gonfa 等人,2023 年)。本研究课题还强调了甘草提取物和甘草多糖对 cGAS-STING 通路的功效。相反,cGAS-STING 激动剂可能具有治疗益处;最近的一项研究表明,激活该通路会诱导 IFN-β 并启动 CD8 + T 细胞
大型的,安装的光伏太阳能项目(GPV)在全球范围内迅速扩展,这是由于它们在缓解气候变化中的重要作用以及向低碳经济的过渡。随着全球跟踪系统的预计,到2050年,预计每年将每年增加32%的能力,了解其生态影响,包括其运营和管理(O&M)的生态影响,但仍在研究中。这项研究介绍了通过常规割草管理的传统单轴GPV中微气候和植被镶嵌物的首次全面评估。在加利福尼亚州的大中央山谷(美国)中,我们开发了一个新型的实验框架,以表征五个不同的“微观点”,该框架捕获了由跟踪PV系统和O&M调制的小气候和植被区域的完整范围。在一个12个月的时间内,我们监视了这些微斑点上的9个上下地下微气候变量和16个植物生态指标。在PV面板下,光合活性辐射降低了89%,风速降低了46%,而GPV足迹内的开放空间显示出更大的土壤表面温度(+2.4°C),并且在干旱期间表现出加速的水分损失(+8.5%)。此外,PV面板旋转全天影响着阴影模式,从而导致空气温度和蒸气压力不足的时间变化。植物调查确定了37种,其中86%是非本地的。显着跨微观植被的差异表明GPV驱动植物群落组成,结构和生产力的变化。与开放空间相比,PV阵列占地面积附近和内部的植被显示出更大的物种丰富度(+8.4%),最高高度(+21%),减少阳光植物的覆盖率(-71%)(-71%)以及较少的死亡生物量积累(-26%),来自阴影驱动的效果。这些发现表明,考虑了微分特定的维护策略和基于自然的解决方案,以控制侵入性,外来的植物物种,赋予增强运营,生态和社会经济可持续性的机会,同时恢复气候变化和生物多样性损失的双胞胎危机。
当电子在二维材料中汇总时,可以观察到量子力学增强的传输现象,例如量子厅效应。石墨烯,由孤立的单个石墨层组成,是这种二维系统的理想实现。然而,预期其行为与常规半导体界面中量子井的量子井的情况有明显不同。这种差异来自石墨烯的独特电子特性,该特性在电荷中立性中性1,2附近表现出电子 - 孔变性和消失的载流子质量。的确,从理论上预测了一个独特的半量量子霍尔效应,并且存在电子波功能的非零浆果相(几何量子相),这也是石墨烯带结构的Excep topiation拓扑的结果。石墨结构的微机械提取和制造技术的最新进展8-12现在可以通过实验对这种外来的二维电子系统进行实验探测。在这里,我们报告了在高素质单层石墨烯中对磁通轨道的实验研究。通过使用电场效应来调节化学电位,我们观察到了石墨烯中电子和孔载体的异常半整数量子霍尔效应。通过磁振荡证实了贝瑞阶段与这些实验的相关性。除了它们纯粹的科学兴趣外,这些不寻常的量子传输现象还可能导致基于碳的电子和磁电机设备的新应用。1a,左插图)。石墨烯的低能带结构可以近似为位于两个不相等的布里渊区角(图在这些锥体中,二维(2D)的能量分解关系是线性的,可以将电子动力学视为“相对论”,其中石墨烯基属性的Fermi速度V f表示光速。尤其是在锥形的顶点(称为狄拉克点),电子和孔(颗粒和抗颗粒)是退化的。使用类似于2 saul的1维电动力学2,3,在理论上研究了Landau水平的能量,
成簇的规律间隔的短回文重复序列-CRISPR相关(CRISPR-Cas)系统作为细菌和古菌中一种重要的RNA引导的适应性免疫系统,其功能是防御病毒、质粒和转座子等移动遗传元件(MGEs)的侵害(Sorek et al., 2013; Faure et al., 2019; Koonin and Makarova, 2019; Makarova et al., 2019)。CRISPR位点由Cas基因和CRISPR阵列组成。CRISPR-Cas系统的功能主要分为三个阶段。第一阶段是适应阶段,Cas蛋白如Cas1和Cas2将外来的原型间隔序列插入到CRISPR阵列中,使其成为新的间隔物。第二阶段为表达阶段,CRISPR阵列转录为前CRISPR RNA(crRNA),随后加工为成熟的crRNA。最后是干扰阶段,crRNA引导CRISPR效应蛋白裂解病毒、质粒等外来靶序列(Barrangou et al., 2007; Brouns et al., 2008)。此前人们认为CRISPR系统仅存在于细菌和古菌中,但最近在巨型噬菌体中发现,CRISPR系统缺少适应阶段所需的Cas蛋白,如Cas1、Cas2和Cas4,而相应的效应蛋白也具备基因编辑能力(Al-Shayeb et al., 2020; Pausch et al., 2020)。这些CRISPR-Cas系统可能靶向宿主基因组,调控宿主基因表达,增强噬菌体的生存力(Al-Shayeb et al.,2020)。CRISPR-Cas系统与MGEs竞争,促进了CRISPR-Cas系统的进化,大大增加了其多样性(Koonin and Makarova,2019)。目前的CRISPR-Cas系统根据效应模块分为1类和2类(Makarova et al.,2015)。1类系统具有由多个Cas蛋白组成的效应模块,包括3种类型和16种亚型,而2类系统包含一个大蛋白,包括3种类型和17种亚型(Makarova et al.,2019)。在过去的十年中,CRISPR-Cas系统已经发展成为多种编辑工具。由于1类成员的复杂性,目前开发的基因编辑工具较少(Özcan等人,2021;Dolan等人,2019;Cameron等人,2019)。目前,2类成员正在被开发成大量的基因编辑工具。2类系统分为三类,包括II型、V型和
具有应用的国际原子,分子,材料,纳米和光学物理学会议(ICAMNOP 2023)将重点介绍原子,分子,材料,材料,纳米和光学物理学的发展,这些发展被证明是强大的科学,支持了许多其他科学和技术领域的科学和技术,包括工业,信息,能源,信息,全球全球变化,全球全球变化,国防,国防,健康,健康,空间和空间,适用,健康,空间,空间和技术。该会议将涉及基本级别以及使用先进技术的原子,离子,分子和纳米结构的实验和理论研究。使用高野外和超快速物理的现代工具,不再仅仅观察自然,而可以重塑和重定向原子,分子,颗粒或辐射。这种朝着量子动力学迈进的新动力对于基本物理和应用能源科学的未来发展至关重要。第三代同步源提供了研究辐射的新机会 - 物质相互作用。光学技术在对原子和分子bose-einstein冷凝物的创造,理解和操纵中也起着非常重要的作用。需要对此类属性和相互作用的完整量子机械描述,因此,本次会议旨在将实验和理论科学家汇总在“原子,分子,材料,纳米和光学物理学”各个领域工作的实验和理论科学家,以共享和交换新的想法。纳米物理学的快速增长领域也被引入为单独的会议主题,其中包括纳米结构和光子学。会议中感兴趣的主题包括:原子与分子结构,碰撞过程,簇,表面以及外来的颗粒和应用,激光冷却,捕获和玻璃 - 爱因斯坦的凝结,高精确度和超速现象,高谐波产生,高谐波和应用,特定的范围,超出范围,超出范围,超出范围,超出范围,超出范围,超出范围,超出范围,超出范围,超出范围,超出范围,超出范围,超出范围,超出范围,超出范围,超出范围,超出的范围,超出的范围,超出范围,超出范围,或者在范围反物质,自由电子激光器,高功率激光器,量子光学及其应用于中学系统的生物分子,原子光谱和分子物理学,颗粒加速度,其他主题涵盖的其他主题是:太阳能和恒星等化的光谱,原子能宇宙,原子宇宙:原子质:spectra:spectra of Cool as of Cool as of Cool as of Cool。在上一个会话中,也将专门用于在石油,可再生能源,环境科学,信息技术,信息技术,健康和教育中的原子,分子,材料,纳米和光学物理学的应用。
多药耐药性结核病(MDR-TB)被定义为异念珠菌和利福平的感染。在全球范围内,有132222个报告了2020年的MDR-TB病例。研究表明,先前的结核病治疗和治疗中断被认为是MDR-TB的主要原因[1,2]。流行病学家将病例对照研究定义为偏见的采样设计。病例对照研究的设计着重于参数逻辑回归,以计算一组协变量的调整后的奇数比(或)。但是,为了建立因果估计人群,或应估算。流行病学家将案例控制定义为与目标人群相比患有疾病的人比例的偏见。病例对照研究的设计着重于参数逻辑回归,以计算一组协变量上的或条件。要构建因果估计,我们必须估计边缘人口或[3]。目标最大似然估计(TMLE)是一种双重鲁棒方法,使用机器学习算法来最大程度地减少偏见的风险[4]。逆概率处理权重(IPTW)是一种因果方法,用于通过创建检查治疗对暴露的影响的模拟组来调整时变的混杂因素。IPTW方法基于侵害的概率,因为混杂因素被称为倾向评分(SP)[5]。 iptw在病例对照研究中有许多缺点,因此估计器无法在有限样本中对无症状效率和效率问题提出任何主张。IPTW方法基于侵害的概率,因为混杂因素被称为倾向评分(SP)[5]。iptw在病例对照研究中有许多缺点,因此估计器无法在有限样本中对无症状效率和效率问题提出任何主张。此外,IPTW在某些阶层中通过一组协变量定义的治疗或暴露组非常罕见时发生的所谓阳性违规行为不利[6]。因此,病例对照加权TMLE(CCW-TMLE)方法提供了双重鲁棒方法来估计无偏见的参数估计。如果给定暴露和协变量的结果模型的任何预期参数或给定协变量的暴露模型是正确的[7],则此方法是一致的。ccw-tmle需要了解结果的患病率概率,以减少偏见的设计[8]。此外,CCW-TMLE估计了各种参数,例如风险比和风险差异,这些参数在病例控制研究的传统分析中不可用。此外,TMLE可以估计边际因果效应,正确的规范和倾向评分。TMLE估计所有参数,假设每个人的暴露状态不会影响任何其他人的潜在结果。主要因果假设是没有未衡量的混杂因素。因此,已经测量了暴露和外来的常见原因[9]。在分析过程中有两种广泛的方法可以控制混杂。第一种方法是使用标准回归模型,第二种方法是遵循因果方法。标准回归模型无法在存在可能的混杂或相互作用和协变量之间的混杂或相互作用的情况下估算暴露的平均因果效应。原因是,此方法假设暴露者和混杂因素之间没有相互作用来估计池效应。更重要的是,标准回归模型无法调整时间变化