引言着重于环境可持续性以及技术的增长,许多研究领域正在出现。这样的领域涉及利用各种形式的可用自然能量来发电。超越太阳能[1],风[2],海洋[3],生物量[4],地热[5],氢能[6]和水力发电[7],环境能量收获[8,9],已经变得越来越重要。通过设计有效的设备来捕获这种残留的机械能,我们可以为生成环保和可定制的电能铺平道路[10]。Triboelectric纳米生成器Tengs为全球能源危机提供了创新的解决方案。这些设备利用接触电气化和静电感应将机械能转换为电力,而无需任何外部电源。通过利用来自人类运动和机械活动等各种来源的机械能量,Tengs已成为一项有前途的技术,尤其是用于自动传感系统和能量收获[11,12]。它们与储能设备的集成对于实际应用至关重要。
erahertz(THz)辐射是电磁光谱的区域,频率在0.1至10 THz之间。1-3微型THZ源和检测器启用了各种应用,例如通信,监视筛查,材料分析,生物医学诊断和个人医疗保健跟踪。1,2,4,5 5物联网(IoT)应用的小型独立传感器的可穿戴电子设备和网络的出现正在推动低功率电子电路和设备或芯片水平上的能源收获中的研究。微型THZ功率探测器可能会成为可以充当能量收集设备的关键组件,尤其是在可透明的薄膜底物上,它们可以克服硅(SI)电子芯片的外形限制,并可以在可扩展的滚动过程中制造。因此,他们有可能无需电池或外部电源提供分散的传感器网络,被动读数电路或集成的移动设备。6
erahertz(THz)辐射是电磁光谱的区域,频率在0.1至10 THz之间。1-3微型THZ源和检测器启用了各种应用,例如通信,监视筛查,材料分析,生物医学诊断和个人医疗保健跟踪。1,2,4,5 5物联网(IoT)应用的小型独立传感器的可穿戴电子设备和网络的出现正在推动低功率电子电路和设备或芯片水平上的能源收获中的研究。微型THZ功率探测器可能会成为可以充当能量收集设备的关键组件,尤其是在可透明的薄膜底物上,它们可以克服硅(SI)电子芯片的外形限制,并可以在可扩展的滚动过程中制造。因此,他们有可能无需电池或外部电源提供分散的传感器网络,被动读数电路或集成的移动设备。6
两台发动机都处于怠速状态,没有设置停车制动器,飞机缓慢向前移动。此时,牵引机侧的牵引杆端已完全与牵引机断开。然而,尽管锁定装置已解锁,但 NLG 侧的牵引杆端仍然与 NLG 纠缠在一起。由于飞机意外移动,耳机操作员和机翼行走员都必须从被纠缠的牵引杆带离移动的飞机。耳机操作员立即通知机组人员设置停车制动器,但没有任何回应。然后,他断开了 NLG 外部电源控制面板 2 上的无线适配器,并将耳机的耳机插孔直接连接到控制面板。当飞机向前移动时,纠缠的牵引杆与 NLG 分离并摇晃到飞机前左侧。随后,NLG 在机组人员面前与牵引车左侧相撞
电池热管理系统(BTM)的目的是维持电池安全性和有效使用,并确保电池温度在安全的操作范围内。传统的基于空气冷却的BTM需要潜在的额外功率,但无法满足具有高能量密度的新锂离子电池(LIB)包装的需求,另一方面,液体冷却BTM需要复杂的设备来确保效果。因此,基于相位的材料(PCM)的BTM已成为趋势。通过使用PCM吸收热量,可以长时间将电池组的温度保持在正常工作范围内,而无需使用任何外部电源。开发了一个实验平台,用于研究带有PCM材料的锂离子电池组的热现象。CFD分析,以确定在运行条件下电动电池和PCM的温度。
6) 内部电源 (IPS):计算机机壳内部的组件,用于将交流电压从主电源转换为直流电压,以便为计算机组件供电。就本规范而言,内部电源应包含在计算机机壳内,但应与主计算机板分开。电源应通过单根电缆连接到主电源,电源和主电源之间没有中间电路。此外,从电源到计算机组件的所有电源连接(集成台式计算机中到显示器的直流连接除外)都应位于计算机机壳内部(即,没有从电源到计算机或单个组件的外部电缆)。用于将来自外部电源的单个直流电压转换为计算机使用的多个电压的内部直流-直流转换器不被视为内部电源。
两台发动机均处于怠速状态,且未设置停车制动器,飞机缓慢向前移动。此时,牵引机侧的牵引杆端已完全与牵引机断开。然而,尽管锁定装置已解锁,但 NLG 侧的牵引杆端仍与 NLG 纠缠在一起。由于飞机意外移动,耳机操作员和机翼行走员都必须从被纠缠的牵引杆带离移动的飞机。耳机操作员立即通知机组设置停车制动器,但没有任何回应。然后,他断开了 NLG 外部电源控制面板 2 上的无线适配器,并将耳机的耳机插孔直接连接到控制面板。在飞机向前移动时,纠缠的牵引杆与 NLG 分离并向飞机前侧左侧摆动。随后,NLG 在机组人员之前与牵引机左侧相撞
一般安全摘要 v .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。服务安全总结 vii .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。前言 ix .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。相关手册 ix .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。约定 x .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。规格 1.。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。操作信息 15.。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。内部和外部电源 15 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。了解前面板 17 .。。。。。。。。。。。。。。。。。。。。。..................连接和使用探头 22 .........。。。。。。。。。。。。。。。。。。。。。。。。。。。操作原理 25 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。主板 25 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。逆变器板 25 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。显示模块 26。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。开关组件 26。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。性能验证 27 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。测试记录 28 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。..................性能验证程序 30 .........。。。。。。。。。。。。。。。。。。。。。。。。.调整程序 51 ..........................................。。。。。。。。。。。。。。。。。。。。。。。。..............调整过程概述 52 ..........。。。。。。。。。。。。。。。。。。。。。。。访问调整锁定跳线 53 。。。。。。。。。。。.................示波器调整 55 ........。。。。。。。。。。。。。。。。。。。。。。。。...........仪表调整 58 ............。。。。。。。。。。。。。。。。。。。。。。。。............更换调整锁定跳线 61 ...........。。。。。。。。。。。。。。。。维护 63 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。准备 63。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。防止 ESD 63。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。检查和清洁 64。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。拆卸和安装程序 67。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。故障排除 90。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。拆包和重新包装说明 102 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。选项 103 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。电气零件清单 105 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。图表107。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。机械零件清单 109 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。零件订购信息 109 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。使用可更换部件列表 110。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
摘要:传统的反射特性可调的反射式光学表面需要复杂的外部电源,电源系统结构和制备工艺复杂,导致反射特性的调制有限,难以大规模应用。受生物复眼的启发,利用不同的微结构来调制光学性能。凸非球面微镜阵列(MMA)可以在扩大视场角的同时提高亮度增益,亮度增益广角>90°,视场广角接近180°,具有大增益广角和大视场广角的反射特性。凹非球面微镜阵列可以使亮度增益增加较大量,最高可达2.66,具有高增益的反射特性。并进行了工业级生产和在投影显示领域实际应用。结果证实,凸面MMA能够在宽光谱和宽角度范围内实现亮度增益,而凹面MMA能够显著提高亮度增益,这可能为开发先进的反射光学表面提供新的机遇。
2022年11月23日,欧洲议会和理事会签署了修改2014年无线电设备指令的指令,目的是要求为手机和许多其他小型便携式设备提供通用的充电器。由欧盟委员会于2021年9月23日提出的修订指令要求电子设备配备USB Type-C插座,并结合USB电源交付通信协议。对外部电源供应的生态设计的单独计划有望确保在充电器电缆的两端使用插座和通信协议。消费者可以选择使用或不带有充电器(解开)的设备,并且会通过象形图告知是否包含充电器。标签上将提供有关充电功能和兼容充电设备的信息。到2024年底,将要求委员会要求创建统一的无线充电标准,并必须定期评估是否应为其他设备强制进行通用充电器。该指令适用于2024年12月28日起涵盖的所有设备,以及2026年4月28日的笔记本电脑。