正电子发射断层扫描(PET)和计算的刻录术(CT)通常共同用于检测肿瘤。PET/CT分割模型可以自动化肿瘤的描述,但是,当前的多模式模型不能完全阐明每种模式中的互补信息,因为它们要么串联PET和CT数据,要么在决策水平上融合它们。为了对抗这一点,我们提出了镜像u-net,它通过将多模式表示形式分配到模态特异性的解码器分支和辅助多模态解码器中,以多模态化的方式代替了传统的融合方法。在这些分支上,镜像u-net标志着一个针对每种模式量身定制的任务,以增强单峰特征,同时保留共享表示中的多模式特征。与以前的方法相比使用了其他方法或多任务学习,Mirror U-net将两个范式结合在一个统一的框架中。我们探索各种任务组合,并检查在模型中共享的哪些参数。我们在Autopet PET/CT和多模式MSD Braintumor数据集上评估了Mirror U-NET,证明了其在多模式分段中的有效性并在两个数据集中实现了先进的性能。代码:https://github.com/zrrrrr1997/ autopet_challenge_mirrorunet
当前用于自动驾驶计算机视觉的深层神经网络(DNNS)通常在仅涉及单一类型的数据和urban场景的特定数据集上进行培训。因此,这些模型努力使新物体,噪音,夜间条件和各种情况,这对于安全至关重要的应用至关重要。尽管持续不断努力增强计算机视觉DNN的弹性,但进展一直缓慢,部分原因是缺乏具有多种模式的基准。我们介绍了一个名为Infraparis的新颖和多功能数据集,该数据集支持三种模式的多个任务:RGB,DEPTH和INDRARED。我们评估了各种最先进的基线技术,涵盖了语义分割,对象检测和深度估计的任务。更多可视化和
多任务处理是一种被广泛研究的现象,近年来由于现代技术的发展而引起了人们的兴趣。执行多项任务需要分散认知功能的行为一直存在,但由于开车时发短信的普遍性和与之相关的危险,这种行为变得越来越普遍。由于人们认为在操作机器时多任务处理存在风险,许多州都出台了法律来防止这种行为,但除了发短信和开车的高风险情况外,人们很少探索在低风险环境下进行任务处理的效果,以评估其成本和收益。以前测试多任务处理效果的方法主要是在驾驶和学业成绩的背景下,并得出结论,从事多项活动会影响认知功能。然而,人们较少关注对家庭环境中分心影响的可量化和客观衡量标准。本研究的目的是使用认知评估工具 Brain Gauge,通过纳入不同类型的媒体作为干扰因素,研究多任务处理的强度和类型与认知处理之间的关系。这项研究通过测试受试者同时执行一系列有趣但平凡的任务时的反应时间来探索这一点。最终发现,与对照组相比,看电视时的反应时间有显著的变化。这项研究的结果可以用来更好地了解多任务处理如何影响认知功能,并有助于确定在做作业和开车等重要任务时是否应该避免多任务处理。
洛克希德·马丁公司先进产品解决方案副总裁 Rick Cordaro 表示:“洛克希德·马丁公司和美国海军在开发和提供颠覆性激光武器系统方面有着共同的愿景和热情。HELIOS 提高了舰船的整体作战系统效能,以遏制未来的威胁并为水兵提供额外的保护,我们明白,我们必须提供根据海军优先事项定制的可扩展解决方案。HELIOS 为逐步交付强大而强大的激光武器系统能力奠定了坚实的基础。”
大量积累的药物基因组学、化学基因组学和副作用数据集为药物反应预测、药物靶标识别和药物副作用预测提供了前所未有的机会。现有的计算方法将其范围限制在这三个任务中的一项,不可避免地忽略了它们之间的丰富联系。在这里,我们提出了 DrugOrchestra,这是一个深度多任务学习框架,可以联合预测药物反应、靶标和副作用。DrugOrchestra 利用预先训练的基于分子结构的药物表征来连接这三个任务。DrugOrchestra 不是直接对单个任务进行微调,而是使用深度多任务学习通过同时对药物反应、靶标和副作用预测进行微调来获得基于表型的药物表征。通过将这三个任务结合在一起,DrugOrchestra 能够仅通过了解其分子结构来预测看不见的药物。我们通过整合三个任务中的 8 个数据集,构建了一个包含超过 21,000 种药物的异构药物发现数据集。与在单个任务或单个数据集上训练的方法相比,我们的方法获得了显着的改进。我们进一步揭示了 8 个数据集和 3 个任务之间的可迁移性,为理解药物机制提供了新的见解。关键词:多任务学习、药物靶标预测、药物副作用预测、药物反应预测可用性:https://github.com/jiangdada1221/DrugOrchestra
多标签属性识别是计算机视觉中的一项关键任务,应用程序范围在不同的领域。这个问题通常涉及检测具有多个属性的对象,需要具有高级差异和精细的特征提取的复杂模型。对象检测和属性识别的集成通常依赖于诸如双阶段网络之类的方法,其中准确的预测取决于高级特征提取技术,例如感兴趣的区域(ROI)池。为了满足这些要求,在统一框架中既可以实现可靠的检测和属性进行分类,这是必不可少的。这项研究介绍了一个创新的MTL框架,旨在将多人属性识别(MPAR)纳入单模型体系结构中。命名为MPAR-RCNN,该框架通过空间意识到的,共享的骨干,促进效果和准确的多标签预测来符合对象检测和属性识别任务。与传统的基于快速区域的卷积神经网络(R-CNN)不同,该网络(R-CNN)分别管理人的检测和归因于双阶段网络的分类,MPAR-RCNN体系结构在单个结构中优化了两个任务。在更宽的(用于事件识别的Web图像数据集)数据集上进行了验证,提出的模型展示了对当前最新ART(SOTA)体系结构的改进,展示了其在推进多标签属性识别方面的潜力。
鉴定蛋白质 - 蛋白质相互作用(PPI)对于在细胞内的众多生物过程中进行深入见解至关重要,并且在药物开发和疾病治疗等领域具有显着的指导价值。当前,大多数PPI预测方法主要集中于蛋白质序列的研究,忽略了蛋白质内部结构的关键作用。本文提出了一种名为MGSlappi的新型PPI预测方法,该方法将注意力集中在我的蛋白质结构信息上,并通过多任务学习策略增强了蛋白质编码器的表现力。具体来说,我们将端到端PPI预测过程分解为两个阶段:氨基酸残基重建(A2RR)和蛋白质相互作用预测(PIP)。在A2RR阶段,我们采用基于图的基于图的残基重建方法来探索蛋白质的内部关系和特征。在PIP阶段,除了基本的相互作用预测任务外,我们还引入了两个辅助任务,即蛋白质特征重建(PFR)和蒙版相互作用预测(MIP)。PFR任务旨在重建在PIP阶段的蛋白质的表示,而MIP任务则使用部分掩盖的蛋白质特征进行PPI预测,两者都在协调一致地工作以提示MGSlappi捕获更多有用的信息。实验结果表明,MGSlappi在各种数据分配方案下的现有最新方法显着优于现有的最新方法。
脑机接口,尤其是被动脑机接口 (pBCI),由于能够估计和监控用户心理状态,越来越受到基础研究和应用研究与开发社区的关注。测试新的管道和基准分类器以及特征提取算法是进一步研究该领域的关键。不幸的是,pBCI 研究中的数据共享仍然很少。COG-BCI 数据库包含 29 名参与者在 3 个独立会话中的记录,这些会话中有 4 个不同的任务 (MATB、N-Back、PVT、Flanker),旨在引发不同的心理状态,总共超过 100 小时的开放 EEG 数据。该数据集在主观、行为和生理层面进行了验证,以确保其对 pBCI 社区的实用性。此外,还给出了一个概念证明,其中包含心理工作量估计管道和结果的示例,以确保数据可用于 pBCI 管道的设计和评估。这项工作为在开放科学框架中推广 pBCI 的使用做出了巨大努力。
移动人群允许在时间和空间上收集大量数据,以养活我们的环境知识,并将这些知识与用户行为联系起来。但是,移动人群面临的一个重大挑战是保证为贡献用户保存隐私。众包系统中的隐私保存导致了两种主要方法,有时是合并的,分别是为了换取奖励的隐私,并利用了增强隐私的技术'''匿名化数据'。尽管相关,但我们声称这些方法不能充分考虑到用户对所提供数据的使用的容忍度,以便人群系统保证用户保证用户的预期机密水平,并促进了对不同任务的人群的使用。为此,我们利用了completeness属性,该属性可确保所提供的数据可用于所有者同意的所有任务,只要它们与其他来源进行分析,并且由于用户对用户的相关贡献而没有违反隐私的侵犯,并且更加严格的隐私要求。因此,挑战是要在分析数据时确保completentions在允许数据中用于尽可能多的任务,并促进所得知识的准确性。这是通过对数据分布敏感的聚类算法来实现的,该算法优化了数据重用和实用程序。使用SGX飞地的原型实现进一步允许运行实验,以表明我们的系统会导致合理的性能开销,同时为恶意对手提供强大的安全性。尽管如此,即使在有恶意的对手能够在服务器端起作用的恶意对手,我们至关重要的是,我们为此引入了by-design-by-design架构利用可信赖的执行环境。©2022 Elsevier B.V.保留所有权利。
序列到功能分析是人类遗传学中的一项具有挑战性的任务,特别是在从生物序列(例如个体化基因表达)预测细胞类型特异性多组学表型时。在这里,我们提出了一种新方法 UNICORN,其预测性能比现有方法有所提高。UNICORN 将来自生物序列的嵌入以及来自预先训练的基础模型的外部知识作为输入,并使用精心设计的损失函数优化预测器。我们证明 UNICORN 在细胞水平和细胞类型水平的基因表达预测和多组学表型预测方面均优于现有方法,并且它还可以生成预测的不确定性分数。此外,UNICORN 能够将个性化的基因表达谱与相应的基因组信息联系起来。最后,我们表明 UNICORN 能够表征不同疾病状态或扰动的复杂生物系统。总体而言,基础模型的嵌入可以促进理解生物序列在预测任务中的作用,并且结合多组学信息可以提高预测性能。