鉴定蛋白质 - 蛋白质相互作用(PPI)对于在细胞内的众多生物过程中进行深入见解至关重要,并且在药物开发和疾病治疗等领域具有显着的指导价值。当前,大多数PPI预测方法主要集中于蛋白质序列的研究,忽略了蛋白质内部结构的关键作用。本文提出了一种名为MGSlappi的新型PPI预测方法,该方法将注意力集中在我的蛋白质结构信息上,并通过多任务学习策略增强了蛋白质编码器的表现力。具体来说,我们将端到端PPI预测过程分解为两个阶段:氨基酸残基重建(A2RR)和蛋白质相互作用预测(PIP)。在A2RR阶段,我们采用基于图的基于图的残基重建方法来探索蛋白质的内部关系和特征。在PIP阶段,除了基本的相互作用预测任务外,我们还引入了两个辅助任务,即蛋白质特征重建(PFR)和蒙版相互作用预测(MIP)。PFR任务旨在重建在PIP阶段的蛋白质的表示,而MIP任务则使用部分掩盖的蛋白质特征进行PPI预测,两者都在协调一致地工作以提示MGSlappi捕获更多有用的信息。实验结果表明,MGSlappi在各种数据分配方案下的现有最新方法显着优于现有的最新方法。
主要关键词