我们研究了在任务之间共享表示形式的好处,以便在多任务增强学习中有效利用深层神经网络。我们利用这样的假设,即从不同的任务中学习,共享共同的属性,有助于概括它们的知识,从而导致更有效的功能与学习一项任务相比。直觉上,当通过增强学习算法使用时,由此产生的功能集提供了性能优势。我们通过提供理论保证来强调在任务之间共享表示形式的条件,从而将近似值近似值的近似时间限制扩展到多任务设置的条件,从而证明了这一点。此外,我们通过提出三种强化学习算法的多任务扩展来补充我们的分析,我们对广泛使用的强化学习基准进行了经验评估,该基准在样本效率和绩效方面显示了对单任务处理的显着改善。