mir-35-42 家族的 microRNA (miRNA) 可重复发挥作用,以确保秀丽隐杆线虫的胚胎活力 (Alvarez-Saavedra 和 Horvitz 2010)。我们感兴趣的是确定 mir-35-42 家族必须抑制的必要靶标。我们之前的研究表明,NHL(环指 b-box 卷曲螺旋)结构域包含 2 (nhl-2) 可能就是这样一个靶标,因为基因组编辑尝试删除 nhl-2 3'UTR 中的 mir-35-42 种子结合区域失败 (McJunkin 和 Ambros 2017)。相同的 CRISPR 试剂在包含 NHL-2 CDS 缺失 (nhl-2(ok818)) 的背景下成功创建了这种缺失 (McJunkin 和 Ambros 2017)。总之,我们认为这些结果意味着 nhl-2 的去抑制会导致致死或不育,从而阻止我们在野生型背景下分离缺失系。最近,CRISPR 基因组编辑试剂和方案的效率提高了许多倍,最显著的是通过注射预装合成向导 RNA (gRNA) 的重组 Cas9 RNP(Paix 等人,2014 年)。通过注射 Cas9/gRNA RNP,我们成功地在野生型背景下删除和突变了 nhl-2 3'UTR 中的 mir-35-42 种子结合区(参见图 1A 中的等位基因)。由于此类等位基因以前难以生成,我们量化了它们的繁殖力和胚胎活力(这是受 mir-35 家族突变影响的两个生理方面)(Alvarez-Saavedra 和 Horvitz 2010;McJunkin 和 Ambros 2014),以查看它们是否受损,但我们发现这些动物是野生型(图 1B)。因此,我们最初的解释——野生型和 nhl-2(ok818) 背景之间的 CRISPR 编辑差异是由于野生型背景中 miRNA 结合位点突变的负选择——是不正确的。观察到的编辑差异的一个可能解释可能是 1.5kb nhl-2(ok818) 缺失引起的染色质结构改变。事实上,核小体的位置和动力学已被证明会改变 Cas9 切割的效率 (Chen 等人 2016;Horlbeck 等人 2016;Isaac 等人 2016;Hinz 等人 2016;Daer 等人 2017;Yarrington 等人 2018;Kim and Kim 2018)。因此,应谨慎解读不同遗传背景之间基因组编辑效率的差异。
摘要 目的 冠心病 (CHD) 是全球发病率和死亡率的主要原因,但尚未对其全球经济成本进行全面评估。我们进行了一项系统评价和荟萃分析,以检查各地区和 CHD 亚型的 CHD 治疗成本,检查是否存在性别成本差异,并检查成本计算方法。 设计 我们对非随机研究进行了系统评价和荟萃分析。 数据来源 我们从 2000 年 1 月 1 日至 2023 年 2 月搜索了 Medline、Embase、CINAHL、EconLit 和 Google Scholar。 选择研究的资格标准 我们纳入了以英文发表的报告 CHD 治疗经济成本和成人结果的观察性研究。 数据提取和综合 数据提取和质量评估由两位审阅者独立进行。成本转换为相应国家人均国内生产总值 (GDP) 的百分比。使用 StataSE V.18 进行荟萃分析时采用随机效应模型计算汇总百分比。使用 I 2 统计量评估异质性。进行了元回归和偏差评估。结果在确定的 20 100 条记录中,来自 22 个国家的 37 项研究(包括 2 564 189 人)被纳入定性综合和定量元分析。在大多数国家,CHD 的年度费用超过人均卫生总费用的许多倍。CHD 每名患者的直接年度汇总费用从人均 GDP 的 4.9% 到 137.8% 不等(国际美元购买力平价),CHD 患者的汇总百分比为 21.7%(95% CI 15.3,28.1)。CHD 的年度汇总成本略有差异,男性的人均 GDP 高 2%(95% CI 0.8,3.2)。大多数研究采用自上而下的成本核算方法(n=21)。结论 本综述说明了 CHD 相关的费用,费用因地区和 CHD 亚型而异。观察到的性别成本差异值得进一步探讨影响成本差异的性别特定因素。探索先进的成本核算方法,例如时间驱动的基于活动的成本核算,可以优化资源
美国宇航局的连续失败不容忽视。航天飞机发射的巨额开支使美国宇航局在国际市场上失去了竞争力,无法发射用于研究天气、国际通信系统或全球表面测绘等实用卫星。在航天飞机计划开始时,美国宇航局宣布,这笔巨额投资将很快得到回报,因为它将使太空发射比一次性助推器便宜得多。但 20 年后的今天,事实却截然相反:将每磅重物发射到近地轨道的成本比其他几个国家同时开发的无人一次性助推器高出许多倍。此外,灾难和险些发生的灾难清楚地表明,航天飞机不是一种安全的发射系统。除此之外,我们还目睹了一系列大规模的失败。哈勃太空望远镜耗资 20 亿美元,但其设计缺陷十分严重,在发射前,只需花费很少的额外费用,用相当简单、高精度的测量仪器就能发现。最近的修复任务能否成功还有待观察。但修复成本(6.3 亿至 12 亿美元)必定会降低人们对修复的热情,因为修复最多不能使仪器达到最初预期的性能。需要修复的独立严重故障数量之多,无法做出良好的预测。伽利略号探测木星及其卫星的任务耗资超过 10 亿美元,可能仍会取得一些成果,但展开航天器天线时发生的机械故障将阻止其将所有结果发回地球。现在,在一系列耗资巨大的航天飞机发射失败之后,另一个耗资近 10 亿美元的重大项目——火星轨道器,也莫名其妙地失败了。同样,一颗地球测绘卫星(Landsat 系列的延续)现在正无用地漂浮在某个未知的地球轨道上。考虑到巨大的成本,一个经过精心规划的项目会遭遇如此接二连三的失败吗?20 世纪 70 年代初,人们非常仔细、详细地讨论了规划太空研究项目的问题。一些外部顾问委员会(一些由 NASA 设立,一些由白宫科技办公室设立)提出了许多详细的建议,这些建议包括:
本期《区域能源摘要》重点介绍与建筑物空间供暖相关的能源储存,特别是热能储存(TES – 热水或加热固体)和电力储存(电池)。还有许多其他类型的能源储存,包括化石燃料储存(例如天然气 – 见下文)。储存的一个原因是在极寒天气期间提供足够的供暖能源,即使平均气温上升,这种情况也可能持续数十年。如果 1 月份室外温度通常平均为 -5⁰C,几天内降至 -25⁰C,那么在寒冷天气期间每小时供暖所需的能源几乎可以翻倍。3 GTHA 几乎所有的空间供暖都使用天然气。供应商通过使用夏季注入大型地下设施的天然气来可靠地满足高需求。(满足高需求的一种可能不太可靠且肯定更昂贵的方法是提供从源头到安大略省市场的足够管道容量。)满足需求峰值是储存的一个重要原因,因为如果不能满足寒冷天气的供暖需求,人们可能会死亡。储能可以适应间歇性供电。太阳能可以在白天储存起来,供晚上或冬天使用。储能可以平衡风力发电的变化。储能可以帮助利用价格差异。可以在非高峰时段储存能源,以便在高峰需求时段提供低成本供应。本文摘的关键信息是,在可以使用 TES 的地方,它通常是空间供暖的更好选择,而不是储存以后用于产生热能的电力。与将电能储存在电池中相比,TES 更实惠、更环保。此外,TES 更适合季节性储存,即在夏季收集热量供冬季使用。单个建筑物可以拥有自己的 TES,但 TES 通常是区域能源系统 2 的一部分,以便从大规模经济中受益。4 下文还涉及空间冷却的储存,但关注较少,因为在安大略省,也许在 GTHA,空间供暖涉及的能源使用量是空间冷却的 14 倍,并且可能占温室气体排放量的很大一部分。 5 到 2050 年,随着全球变暖加剧,供暖所需的能源仍可能比制冷多很多倍。
随着时间的推移,世界各国越来越重视寻找替代能源,以满足全球不断增长的能源需求 (4,5)。为了子孙后代的生存,我们必须迅速从化石燃料转向清洁能源。航空业是全球排放的重要贡献者之一,2018 年美国碳排放量的 2.4% 来自航空业,这是由于燃烧喷气燃料的煤油所致 (6)。与汽车使用的汽油一样,煤油是一种化石燃料,由各种液态碳氢化合物组成,通过精炼石油获得 (7)。为了满足不断增长的全球经济和人口的交通需求,航空业必须克服对煤油的依赖,实现环境可持续。随着氢动力汽车的进步,近年来,氢气已成为一种有前途的潜在飞机燃料来源 (8)。氢气的比能量密度为 120 MJ/kg,几乎是煤油的三倍,是锂离子电池的 100 多倍 (9)。氢气既可以在氧气存在下直接燃烧以驱动内燃机,也可以在燃料电池中与氧气反应产生电流,为电动机提供动力。这两个过程的主要副产品都是水蒸气,这意味着使用氢气发电不会直接产生二氧化碳 (10)。虽然使用氢气不会排放二氧化碳,但生产氢气的各种方法都会排放二氧化碳。目前,美国几乎所有商业生产的氢气都是通过蒸汽甲烷重整 (SMR) 生产的。商业氢气工厂和石油炼油厂在催化剂存在下将高温蒸汽 (700˚C 至 1000˚C) 与甲烷反应生成氢气和一氧化碳 (CO) (11)。由于 CO 是一种致命气体,因此它会与额外的蒸汽反应生成二氧化碳和更多的氢气。纯通过 SMR 生产的氢气被归类为灰色氢气。尽管这是最便宜的方法,但 SMR 会排放大量二氧化碳 (11)。然而,通过碳捕获和储存 (CCS) 技术可以减少 SMR 的大量排放,该技术使用各种化学方法在源头回收二氧化碳并将其储存在地下深处。目前的 CCS 技术可以捕获高达 80% 的释放二氧化碳 (12)。当 SMR 与 CCS 结合时,产生的氢气被归类为蓝色氢气
数千亿美元的公共和私人资本正在投资于人工智能和机器学习公司。2021 年提交的专利数量是 2015 年的 30 多倍,因为世界各地的公司和国家都意识到人工智能和机器学习将成为重大颠覆因素,并可能改变军事力量的平衡。直到最近,炒作都超过了现实。然而,今天,人工智能在几个重要领域(这里、这里、这里、这里和这里)的进步等于甚至超过了人类的能力。如果你还没有注意,现在是时候了。人工智能和国防部国防部认为人工智能是一套基础技术,他们成立了一个专门的组织——JAIC——来在整个部门内实现和实施人工智能。他们为国防部用户提供基础设施、工具和技术专长,以成功构建和部署他们的 AI 加速项目。本文档后面列出了一些特定的国防相关 AI 应用程序。我们正处于一场革命之中 想象一下现在是 1950 年,你是一位从今天回到过去的访客。你的工作是向使用手动计算器和计算尺的人们解释计算机将对商业、国防和社会产生的影响。你成功说服一家公司和一个政府采用计算机并比竞争对手/对手更快地学习编码。他们想出了如何以数字化方式实现业务——供应链、客户互动等。想想他们今天在商业或国家中拥有的竞争优势。他们会压倒所有人。这就是我们今天在人工智能和机器学习方面所处的位置。这些技术将改变企业和政府机构。今天,数千亿美元的私人资本已投资于数千家人工智能初创企业。美国国防部已经成立了一个专门的组织来确保其部署。但它是什么?与过去 75 年来我们所使用的传统计算相比,人工智能已经带来了新类型的应用,例如面部识别;新类型的算法,例如机器学习;新类型的计算机架构,例如神经网络;新硬件,例如GPU;新类型的软件开发人员,例如数据科学家;所有这些都属于人工智能的主题。这些加起来感觉就像流行语宾果游戏。但它们预示着计算机功能、功能实现方式以及所需硬件和软件将发生翻天覆地的变化。
主题:生物学第一部分 - 生物化学,细胞生物学和活生生,pH和缓冲。氨基酸,蛋白质和蛋白质组学。酶。生物能学。糖酵解。发酵。糖酮发生。糖原的合成和降解。克雷布斯周期。呼吸链和氧化磷酸化。脂质代谢。氨基酸代谢。整合和代谢调节。起源,原核生物和真核细胞的成分和一般特征。化学成分:化学物质维持稳态的功能重要性。动物和植物细胞:组织,代谢,功能以及细胞结构与细胞器之间的相互作用。细胞繁殖:有丝分裂和减数分裂。一般特征。各种生物:五个王国的分类系统,分类类别,物种概念和命名法规则。主要群体的一般特征:病毒,莫奈托,原生物,真菌,植物学和动物II部分 - 组织学,解剖学以及动物以及植物生理学结构和功能概念。组织的胚胎起源。生物的内部和外部解剖学。人类解剖学。生物的比较解剖学。动物和植物组织的主要类型,特征和功能。器官和系统。呼吸和气态交流。循环:气体和养分的运输。营养:营养,消化和吸收;疾病故障。排泄。支持和运动系统。整合机制:神经和内分泌;神经生物学:神经解剖学,神经化学和神经生理学。对环境刺激的反应。繁殖:无性和性。防御系统:细胞和体液免疫机制。先天和获得的免疫力。疫苗,单克隆抗体和免疫诊断。第三部分 - 分子生物学,遗传学和进化基本概念:术语,交叉和概率。mendelism and Neomendelism:单声道和二元主义,polylia,基因相互作用和性遗传。染色体异常。多倍肌,非整倍体,多态性和行为遗传学。细胞遗传学基本原理:遗传密码,基因和染色体。基因工程的概念:克隆,聚合酶链反应(PCR),CRISPR技术,转基因生物,分子诊断和基因治疗。主要理论和进化过程的证据。进化机制。遗传变异性的来源:突变和基因重组。统一漂移,地理障碍,杂交,表观遗传学,自然和人工选择。基因组,转录瘤,基因比对,分子进化。
摘要。这篇科学文章深入回顾了可再生能源的最新进展,探讨了它们在应对全球能源挑战方面的重要性。本文涵盖了各种类型的可再生能源,包括太阳能、风能、水电、地热能和生物质能,强调技术发展、效率改进和环境考虑。此外,本文还讨论了全球可再生能源采用的现状及其对减少碳排放的潜在影响。该分析整合了最近的研究和研究论文的结果,全面概述了可再生能源技术的当前格局。1. 简介 21 世纪人们越来越认识到传统能源的局限性和环境影响。化石燃料的开采、燃烧和利用不仅对全球变暖产生了重大影响,而且还导致了地缘政治紧张和资源枯竭 [1, 2]。在这种背景下,可再生能源已成为一种有前途的替代品,利用自然元素取之不尽的力量来满足世界日益增长的能源需求。受环保要求和能源安全需求的推动,全球各国政府、行业和研究机构加大了探索和提升可再生能源技术潜力的力度。对可持续能源解决方案的追求推动了太阳能 [3, 4]、风能 [5]、水电 [6-10]、地热 [11-13] 和生物质能 [14-20] 技术的发展。这些进步不仅有望带来更清洁的能源,还为各国带来了经济机会和能源独立性。可再生能源在全球和单个国家范围内的能源潜力是当前能源消耗水平的许多倍,因此可以将其视为一种可能的能源生产来源。众所周知,人类发展的先决条件表明,需要对已在管理的可再生能源进行广泛研究,这既是因为石油、天然气和煤炭产量不可避免地增加,成本也随之增加,也因为环境原因(二氧化碳排放和经济政策对环境的其他有害影响)。通常来说,可再生能源的使用不会对环境产生严重的负面影响;在大多数情况下,它们都是环保且广泛可用的能源。可再生能源的严重缺点限制了其广泛使用,包括能量流密度低、随时间变化大,因此需要大量成本来购买用于收集、积累和转换能源的设备 [21]。例如,晴天中午太阳辐射在地球表面的通量密度仅为 1 kW/m 2 左右,其年平均值为考虑到季节和天气波动,对于地球上阳光最充足的地区,热流密度不超过 250 W/m 2 [22]。风流的平均比能量密度通常也不超过几百 W/m 2 ,风速为 10 m/s 时,比能量密度约为 500 W/m 2 。速度为 1 m/s 的水流的能量密度也只有 500 W/m 2 左右。为了进行比较,我们指出,现代蒸汽锅炉炉壁上的热流密度达到几百 kW/m 2 。
塔塔电力可再生能源有限公司 (TPREL) 是塔塔电力有限公司的子公司,也是印度最重要的可再生能源参与者之一。TPREL 是可再生能源项目(包括太阳能、风能、混合、全天候 (RTC)、峰值、浮动太阳能和包括电池存储在内的存储系统)的开发商,并由其拥有、运营和维护这些项目。该公司还为农村和城市地区提供全面的绿色能源解决方案,例如为公用事业规模项目、太阳能屋顶和太阳能泵系统等各种业务部门提供交钥匙、EPC 和 O&M 解决方案。除了广泛的可再生能源解决方案组合外,该公司还在班加罗尔拥有一家最先进的太阳能电池和模块制造厂,包括 530 兆瓦太阳能电池和 682 兆瓦模块,并计划在泰米尔纳德邦建立一座 4.3 吉瓦的太阳能电池和太阳能模块工厂。此外,TPREL 还为各个细分市场提供电动汽车 (EV) 充电解决方案,并为可再生能源行业提供其他咨询解决方案。截至目前,TPREL 的可再生能源总发电量为 9,018 MW(PPA 发电量为 7,632 MW),其中包括处于不同实施阶段的 4,747 MW 项目,其运营发电量为 4,271 MW,其中包括 3,244 MW 太阳能和 1,027 MW 风能。目前,该公司的太阳能 EPC 组合包括超过 12.8 GWp 的地面安装公用事业规模、超过 2 GW 的屋顶和分布式地面安装系统以及超过 1,00,000 个太阳能水泵。TPREL 旨在通过其综合绿色能源解决方案为全国数百万人提供能源。了解更多信息:www.tatapowersolar.com 关于塔塔电力:塔塔电力 (NSE: TATAPOWER; BSE:500400) 是印度最大的综合电力公司之一,连同其子公司和合资实体,其装机/管理容量为 14,464 兆瓦。该公司涉足整个电力价值链 - 可再生能源和传统电力(包括水力和热能)的发电、输电和配电以及交易。该公司在蒙德拉(古吉拉特邦)开发了印度首个基于超临界技术的超级电力项目。该公司拥有 5,604 兆瓦的清洁能源发电量,包括太阳能、风能、水力发电和废热回收,占总发电量的 39%,是清洁能源发电领域的领导者。该公司在印度的发电、输电和配电领域建立了成功的公私合作伙伴关系,例如:Powerlinks Transmission Ltd. 与印度电网公司合作,将电力从不丹的塔拉水电站输送到德里,Maithon Power Ltd. 与达摩达河谷公司合作,在贾坎德邦建设 1,050 兆瓦的大型发电项目。塔塔电力目前通过其配电公司为 1240 多万消费者提供服务,采用公私合作伙伴关系模式,例如塔塔电力德里配电有限公司与德里政府合作,在北德里建设电力供应站,TP Northern Odisha Distribution Limited、TP Central Odisha Distribution Limited、TP Western Odisha Distribution Limited 和 TP Southern Odisha Distribution Limited 与奥里萨邦政府合作。塔塔电力专注于可持续和清洁能源开发,通过屋顶太阳能和微电网、存储解决方案、电动汽车充电基础设施、能源服务公司、家庭自动化和智能电表等寻找分布式发电的新业务增长,引领转型成为综合解决方案提供商。凭借 108 年的技术进步、卓越的项目执行、世界一流的安全流程、客户服务和绿色计划,塔塔电力已为实现多倍增长做好了准备,并致力于照亮子孙后代的生活。欲了解更多信息,请访问:www.tatapower.com
摘要 使用 CRISPR-Cas9 对原代人类细胞进行基因组工程改造彻底改变了细胞生物学的实验和治疗方法,但人类髓系细胞在遗传上仍然难以治疗。我们提出了一种通过核转染将 CRISPR-Cas9 核糖核蛋白 (RNP) 复合物直接递送到从外周血纯化的 CD14+ 人类单核细胞中的方法,从而实现高精确基因敲除率。这些细胞可以有效分化为单核细胞衍生的巨噬细胞或树突状细胞。该过程产生的基因编辑细胞保留了髓系分化和吞噬功能的关键标记。限制因子 SAMHD1 的基因消融使 HIV-1 感染增加了 50 多倍,证明了该系统在基因型-表型查询方面的强大功能。这种快速、灵活且可扩展的平台可用于人类髓系细胞在免疫信号、炎症、癌症免疫学、宿主-病原体相互作用等方面的遗传研究,并可促进新型髓系细胞疗法的开发。简介髓系细胞是健康和疾病免疫系统中的关键参与者(Germic 等人,2019 年;Lapenna 等人,2018 年;Worbs 等人,2017 年)。单核细胞和巨噬细胞在先天免疫系统的直接分支中发挥作用,对病原体或组织损伤作出反应,并帮助调节和解决组织炎症。作为专业的抗原呈递细胞,树突状细胞可协调适应性免疫反应。鉴于髓系细胞的核心作用,髓系细胞被确定为从发育和稳态调节到病原体反应、自身炎症性疾病、纤维化和恶性肿瘤等各个方面的关键参与者也就不足为奇了 (Chao 等人,2020 年;Engblom 等人,2016 年;Manthiram 等人,2017 年;Medzhitov 和 Janeway,2000 年、1997 年;Wynn 等人,2013 年)。更好地了解这些细胞的正常行为和致病行为对于进一步加深我们对各种疾病的机制理解至关重要,为发现和发展新疗法带来了希望。我们识别新治疗靶点和构建新细胞干预措施的能力与我们对相关原代细胞类型的基因操作能力同步发展。例如,小鼠基因方法揭示了小鼠巨噬细胞的显著多样性,而骨髓亚群的基因消融为临床中类似细胞的治疗靶向铺平了道路(Wynn 等人,2013 年)。CRISPR-Cas9 介导的基因靶向显著扩展了曾经难以治疗的细胞类型的潜力,促进了重要的发现工作和增强的原代 T 细胞细胞治疗方法(Roth 等人,2018 年;Schumann 等人,2015 年;Simeonov 和 Marson,2019 年;Stadtmauer 等人,2020 年),以及使用编辑的造血干细胞/祖细胞治疗衰弱性遗传疾病(Foss 等人,2019 年;Wu 等人,2019 年)。到目前为止,CRISPR-Cas9 在原代人类髓系细胞中效率低下,限制了人类免疫系统这些关键细胞的功能遗传学研究和基因组工程。已鉴定出 SAMHD1 是髓系细胞中阻止有效慢病毒转导的关键限制因子(Hrecka 等人,2011 年;Laguette 等人,