February 6, 2024 MEMORANDUM SUBJECT: Integrating Climate Change Adaptation Considerations into the Resource Conservation and Recovery Act Corrective Action Process FROM: Carolyn Hoskinson, Director TO: Land, Chemicals, and Redevelopment Division Directors, Regions 1-10 PURPOSE This memorandum 1 conveys the U.S. Environmental Protection Agency's (EPA or Agency) recommendations on how EPA regions and authorized states should work with RCRA facility owners or经营者将气候变化适应考虑因素整合到1976年《资源保护和恢复法》(RCRA)下的纠正行动过程中,并由1984年的危险和固体废物修正案(HSWA)修订。2纠正措施是RCRA处理,存储和处置设施的所有者和运营商在保护和清理危险废物和成分的释放中,以保护人类健康和环境的必要条件。气候变化可以增加极端天气事件的频率和强度,例如降水量和风暴;或可能导致更多逐渐变化,例如海平面上升。降水量或温度的季节性变化,洪水的风险增加,飓风和野火的强度和频率的增加以及北部地区多年冻土的融化是气候相关变化的其他例子,这可能会影响RCRA清理。这些更改可能导致
冰川地下水可以在北极的冰川和多年冻土下动员深处的甲烷,从而导致这种温室气体的大气排放。我们提出了一个暂时的水力化学数据集,该数据集是在两个熔融季节中从高北极冰川前场收集的富含甲烷的地下水,以探索甲烷排放的季节性动态。我们使用甲烷和离子浓度以及水和甲烷的同位素组成来研究地下水的来源以及地下水传输到表面的甲烷的起源。我们的结果表明了两个地下水的来源,一个浅层和一个深层,它们混合和中等的甲烷动力学。在夏季,富含甲烷的地下水被浅含氧地下水稀释,导致某些微生物甲烷在表面出现之前。地下水中微生物组成的表征表明,微生物活性是沿该流路线的重要季节性甲烷下沉。在所研究的地下水池中,我们发现由于微生物氧化,整个夏季,潜在的甲烷排放平均减少了29%(±14%)。在冬季,由于冷冻,减少地下甲烷氧化并有可能允许更大的甲烷排放,因此许多浅层系统关闭,而深层地下水保持活跃。我们的结果表明,随着含水层的能力和补给量在变暖的气候下增加,不同地下水来源的比率将在未来发生变化。
北极区的变暖是北半球平均速率的两倍,比1979年以来的全球快了近四倍。在欧洲的斯瓦尔巴群岛的欧洲群岛中,当地的变暖速度甚至更高。这种变暖正在改变陆地积雪,该积雪调节了与大气的表面能量交换,这是北极集水区的大部分径流,也是大气沉积化合物(包括污染物)的短暂储层。需要改进观察结果,需要对北极积雪变化的理解和建模,以预测这些变化对北极气候,大气,地面ecosys tems和社会经济因素的影响。svalbard一直是极地研究的国际枢纽,并从发达的科学基础设施中受益。在这里,我们提出了由多学科专家社区共同开发的斯瓦尔巴德雪研究未来的议程。我们回顾了雪研究的最新趋势,确定关键知识差距,确定未来的研究工作的优先级,并建议采取支持行动,以促进我们对与冰川质量平衡,多年冻土,表面水文,陆地生态学,循环和命运有关的当前和未来雪状况的了解,大气污染物的循环和命运以及雪覆盖的遥感。此观点文章解决了与圆形北部相关的问题,可以用作其他国家或国际北极研究计划的模板。
将近2,000种植物,主要是苔藓,莎草,草和开花植物,形成了苔原的植被。物种的多样性从树线到北部的永久性冰盖逐渐减少。由于气候,多年冻土和夏季短,桦树和柳树等树种是地面覆盖物,它们在这个生物群落中水平生长,而不是向上生长。这还有助于植物从冬季的绝缘雪覆盖中受益。苔原植物需要在有限的时间和阳光允许的时间内快速生长。这使短暂的夏季非常丰富多彩;此时,许多令人惊叹的开花植物,例如矮人的防火道和山地avens,都在开花。随着阳光在北极圈上方的夏季每天24小时闪耀,与南方同行相比,一些北极植物可以在这种间接的光线下生长和发展。居住在苔原上的植物已经适应了短期生长季节,大风,低温,缺乏湿度和低酸性土壤营养水平。它们具有浅根系统,只能在土壤的活跃层或夏季未冷冻的土壤中生长。生长在地面附近,以避开强风,并利用吸收热量的深色土壤和岩石,苔原植物往往会保持短且在土壤上生长,就像紫色的saxifrage,网状叶状的柳树和其他苔原灌木一样。这会捕获单个植物之间的温暖空气并有助于生长。植物保持温暖的另一种方法是让不同的物种挤在一起,或者使一个单个物种以特定的模式(例如玫瑰花塞或厚垫子)生长,例如苔藓campion和三个齿状saxifrage。
水的供应,水力和粮食安全是中亚社会在人类时代的主要关注点(Jalilov等,2016; Reyer等,2017)。与工业前级别相比,在本世纪末2 C以下2 C以下的全球变暖限制了全球变暖(Meinshausen等,2020)。然而,CA的温度趋势上升已经显着高于全球平均值(Yao等,2021)。因此,如果越过这个阈值,则假定社会和经济影响是严重的(Reyer等,2017)。CA的气候主要由干旱,半干旱,温带和半渗透区域主导(Duan等,2019; Jalilov等,2016; Yao等,2021)。此外,这些地区在苏联崩溃后经历了极端的非校园和经济状况(Lioubimtseva&Henebry,2009年)。根据Pekel等人。(2016年),在1984年至2015年之间,CA和中东发生了超过70%的全球永久性地表水损失。地下水在全球范围内提供超过36%的饮酒和42%的农业水(Ashraf等,2021)。但是,其可用性受蒸发和人类戒断的增加影响。大约33%的地球人口生活在封装地中海,亚洲,中东和北非的半干旱和干旱地区,被归类为水压力区域(Vörösmarty等,2010)。全球综合综合(Vörösmarty等,2010)得出的结论是,世界上约80%的人口遭受了高水平的水安全性。山是加利福尼亚州当地河流的最重要水源。他们在冬季和秋季中通过冰川,多年冻土和雪保持前态(Chen等,2016)。在CA的更快的全球变暖趋势下,降水量和融雪/冰川比和降水
水的供应,水力和粮食安全是中亚社会在人类时代的主要关注点(Jalilov等,2016; Reyer等,2017)。与工业前级别相比,在本世纪末2 C以下2 C以下的全球变暖限制了全球变暖(Meinshausen等,2020)。然而,CA的温度趋势上升已经显着高于全球平均值(Yao等,2021)。因此,如果越过这个阈值,则假定社会和经济影响是严重的(Reyer等,2017)。CA的气候主要由干旱,半干旱,温带和半渗透区域主导(Duan等,2019; Jalilov等,2016; Yao等,2021)。此外,这些地区在苏联崩溃后经历了极端的非校园和经济状况(Lioubimtseva&Henebry,2009年)。根据Pekel等人。(2016年),在1984年至2015年之间,CA和中东发生了超过70%的全球永久性地表水损失。地下水在全球范围内提供超过36%的饮酒和42%的农业水(Ashraf等,2021)。但是,其可用性受蒸发和人类戒断的增加影响。大约33%的地球人口生活在封装地中海,亚洲,中东和北非的半干旱和干旱地区,被归类为水压力区域(Vörösmarty等,2010)。全球综合综合(Vörösmarty等,2010)得出的结论是,世界上约80%的人口遭受了高水平的水安全性。山是加利福尼亚州当地河流的最重要水源。他们在冬季和秋季中通过冰川,多年冻土和雪保持前态(Chen等,2016)。在CA的更快的全球变暖趋势下,降水量和融雪/冰川比和降水
水的供应,水力和粮食安全是中亚社会在人类时代的主要关注点(Jalilov等,2016; Reyer等,2017)。与工业前级别相比,在本世纪末2 C以下2 C以下的全球变暖限制了全球变暖(Meinshausen等,2020)。然而,CA的温度趋势上升已经显着高于全球平均值(Yao等,2021)。因此,如果越过这个阈值,则假定社会和经济影响是严重的(Reyer等,2017)。CA的气候主要由干旱,半干旱,温带和半渗透区域主导(Duan等,2019; Jalilov等,2016; Yao等,2021)。此外,这些地区在苏联崩溃后经历了极端的非校园和经济状况(Lioubimtseva&Henebry,2009年)。根据Pekel等人。(2016年),在1984年至2015年之间,CA和中东发生了超过70%的全球永久性地表水损失。地下水在全球范围内提供超过36%的饮酒和42%的农业水(Ashraf等,2021)。但是,其可用性受蒸发和人类戒断的增加影响。大约33%的地球人口生活在封装地中海,亚洲,中东和北非的半干旱和干旱地区,被归类为水压力区域(Vörösmarty等,2010)。全球综合综合(Vörösmarty等,2010)得出的结论是,世界上约80%的人口遭受了高水平的水安全性。山是加利福尼亚州当地河流的最重要水源。他们在冬季和秋季中通过冰川,多年冻土和雪保持前态(Chen等,2016)。在CA的更快的全球变暖趋势下,降水量和融雪/冰川比和降水
在两倍的大气二氧化碳浓度下推导的LROM一般循环模型的主要平衡变化表明,全球平均温暖在1.5至4.5英寸C之间,>最佳猜测>最佳猜测> 2.5'c,在冬季,高纬度地区的表面温暖,但在夏季的全球平均水平高于全球平均水平,而降水量则较小。海冰和季节性雪覆盖 区域气候场景,例如 对于Fennoscandian区域,模拟平均冬季温度甚至5-6英寸C;但是,区域变化的估计值,尤其是降水和蒸发的变化非常不可靠。在两倍的大气二氧化碳浓度下推导的LROM一般循环模型的主要平衡变化表明,全球平均温暖在1.5至4.5英寸C之间,>最佳猜测>最佳猜测> 2.5'c,在冬季,高纬度地区的表面温暖,但在夏季的全球平均水平高于全球平均水平,而降水量则较小。海冰和季节性雪覆盖区域气候场景,例如对于Fennoscandian区域,模拟平均冬季温度甚至5-6英寸C;但是,区域变化的估计值,尤其是降水和蒸发的变化非常不可靠。暂时确定了温室引起的气候变化对环境的潜在后果。在审查了过去气候变异性(包括由于自然原因引起的突然变化和急剧变化)之后,注意力集中在特定的气候敏感过程和现象上,例如哭泣的过程(冰川过程,冰川,雪覆盖,多年冻土降解),斜坡稳定性,SLOPE稳定性,北部Peatland,北部Peatland,northern Peatland,northern Peatland的变化,素食ZONES和其他Ecosystem ecosystems and ecosystem ecosys whights and ecosys and ecosys whings ecosys响应。在评估气候变化对生态系统和景观的潜在影响时,地貌杂质生态过程的动态反应中的不确定性导致研究推荐。