随着可再生能源的不断增加,传统的电源结构和机组地理分布面临结构性变革,现有的调度方案面临着多源协同、多时间协调的优化挑战。本文从中长期、短期和实时三个时间尺度对含可再生能源接入的电力系统发电调度优化进行了综述。首先,对调度模型与方法进行综述,指出火电、水电、风电、太阳能、储能等不确定多源数学模型与市场机制的联系与区别。其次,从确定性和不确定性两个维度对调度算法与方法进行梳理,展示传统调度与含可再生能源调度问题在算法上的创新点与差异点,同时指出各个时间尺度之间的相互作用与耦合关系,并指出当前研究的挑战与不足,为调度人员提供参考和未来的发展方向。
摘要 本文提出了一种基于现代深度强化学习的微电网多时间尺度协调运行方法。考虑到不同储能设备的互补特性,所提出的方法通过引入分层的两阶段调度模型实现了电池和超级电容器的多时间尺度协调。第一阶段使用每小时预测数据做出初步决策,而不考虑不确定性,以最小化运营成本。第二阶段旨在为第一阶段的决策生成纠正措施,以补偿实时可再生能源发电波动。第一阶段被表述为非凸确定性优化问题,而第二阶段被建模为马尔可夫决策过程,通过熵正则化的深度强化学习方法即软演员-评论家来求解。软演员-评论家方法可以有效地解决探索-利用困境并抑制变化。这提高了决策的鲁棒性。仿真结果表明,可以在两个阶段使用不同类型的储能设备来实现多时间尺度的协调运行。证明了所提方法的有效性。关键词:微电网运行,混合储能系统,深度强化学习
可再生能源因低碳经济的优势已成为重要的电力来源。氢气是一种清洁燃料,也引起了全世界的极大关注。可再生能源可用于生产氢能。张等人提出了一种可再生能源和氢气生产的协调控制新方法,加氢站和能源系统的运行经济性得到了改善(张等,2022)。到目前为止,许多工作都集中在可再生能源系统和能源互联网上(张,2018)。值得注意的是,光伏 (PV) 技术一直是可再生能源系统的热点。有着迫切的需求,但在不确定的环境中控制光伏系统仍然是一项重大挑战。傅等人(2019)研究了一种两级光伏结构,他们利用 μ 理论提出了一种有效的光伏电力整合技术。李等人(2019)研究了一种两级光伏结构,他们利用 μ 理论提出了一种有效的光伏电力整合技术。提出了一种最大功率点跟踪方法,可确保在部分阴影条件下稳定的光伏发电(Li等,2021)。随着可再生能源系统中光伏容量的增加,并网配置正在改变能源网络的运行模式(Eftekharnejad等,2015)。为了降低带电池储能的光伏发电系统的成本,郝等提出了一种双层控制方法,该方法也能确保稳定的光伏发电(郝等,2021)。值得一提的是,太阳能光伏项目将在未来电力组合的经济性中发挥重要作用(Vithayasrichareon等,2015)。最大的挑战之一是光伏组件的不确定性使配电网中的分布式发电规划格外困难。人们普遍认为,统计机器学习是建模光伏电力不确定性的有效技术(Fu等,2020)。对于带有光伏发电的配电网,经常需要配置无功功率装置来改善能源网络的性能(Fu,2022)。Fu等人提出了一种自适应无功功率控制策略来平衡电能质量和功率损耗之间的权衡,该方法增强了光伏系统接入电网的友好性(Fu等人,2015)。对于集中式光伏发电,功率因数控制和电压控制是光伏电网连接的关键技术。Awadhi和Moursi发明了一种新型集中式光伏电站控制器,以避免电压不平衡,并且瞬态响应也得到了增强(Awadhi和Moursi,2017)。Emmanuel等人提出了一种基于小波变异性的功率因数控制方法,并报道了功率因数对集中式光伏电站输出影响的分析结果(Emmanuel等人,2017)。学者们对分布式光伏发电的部署和控制进行了大量研究工作,但较少关注分布式光伏发电与集中式光伏发电之间的关系。
免责声明 本报告是作为美国政府机构赞助的工作的说明而编写的。美国政府及其任何机构、芝加哥大学阿贡分校有限责任公司及其任何员工或官员均不做任何明示或暗示的保证,也不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务,并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文表达的文档作者的观点和意见不一定陈述或反映美国政府或其任何机构、阿贡国家实验室或芝加哥大学阿贡分校有限责任公司的观点和意见。
公园综合能源系统(PIE)在实现可持续能源发展和碳中性方面起着重要作用。此外,其优化调度可以提高能源利用率的效率并降低能源系统的运行成本。然而,可再生能源的随机性和波动性和负载不稳定都为其最佳操作带来了挑战。提出了一个最佳的派对框架,该框架在三个不同的时间尺度下构建了操作模型,包括日前,日内和实时。考虑到不同时间尺度下的响应特征和成本组成,需求响应也分为三个级别。示例分析表明,多时间尺度优化调度模型不仅可以达到派对的供求平衡,从而减少了可再生能源的频率和压力载荷曲线的自动,还可以降低运行成本并提高能源系统的可靠性。
用于空间领域感知应用的加速 AI 驱动大气预测 丹尼·费尔顿 诺斯罗普·格鲁曼公司 玛丽·艾伦·克拉多克、希瑟·凯利、兰德尔·J·阿利斯、埃里克·佩奇、杜安·阿普林 诺斯罗普·格鲁曼公司 摘要 太空激光和监视应用经常受到大气效应的影响。气溶胶、云和光学湍流引起的大气衰减和扭曲会产生有害影响,从而对任务结果产生负面影响。2019 年 AMOS 会议上简要介绍的一篇论文介绍了 2017 年在哈莱阿卡拉峰安装的地面仪器。这些仪器仍在积极收集数据,它们正在提供前所未有的空间环境实时表征,包括精确的大气传输损耗。虽然实时测量是理解和表征空间环境的第一步,但仅靠它们是不够的。为了优化任务规划,许多应用都需要对空间环境进行准确的短期大气预测。虽然大气预报并不是什么新鲜事,但最近随着 21 世纪人工智能 (AI) 技术的应用,大气预报的技能得到了极大提升。这些技术是高性能计算 (HPC) 和深度学习 (DL) 的结合。本演讲的主题是使用来自地面大气收集系统的 TB 级数据训练预测模型,并使用图形处理单元 (GPU) 加速其训练和推理的能力。本研究侧重于预测的三个时间尺度。这些时间尺度包括短期(0 到 60 分钟)、中期(1 小时到 3 小时)和长期(3 到 48 小时)。这些时间尺度代表激光和/或监视应用和任务的各种决策点。在短期预测情况下,多种 DL 技术应用于从光学地面站 (OGS) 收集的本地数据。这些 DL 技术包括使用 U-Net 卷积神经网络和多层感知器 (MLP) 和随机森林 (RF) 模型的集合。 MLP 用于从激光云高仪和红外云成像仪 (ICI) 等仪器收集的点数据。对于中间时间尺度,卷积长短期记忆 (LSTM) 网络和 U-Net 均使用来自 NOAA 地球静止卫星云图集合的图像进行训练。最后,组合 U-Net 和自动编码器神经网络用于训练由 HPC 数值天气预报 (NWP) 模型模拟的大气预测器以进行长期预测。NWP 会产生许多 TB 的数据,因此,使用这些神经网络是优化其预测能力的理想选择。本研究利用了多种 HPC 资源。其中包括由四个 NVIDIA Tesla V100 GPU 组成的内部 GPU 节点以及毛伊高性能计算中心 (MHPCC) 的资源。结果表明,在几乎所有情况下,这些预测技术都优于持久性,而且偏差很小。使用 HPC 和 DL 推理实时进行预测的能力是未来的重点,将在会议上报告。1. 简介大气衰减和失真降低了太空激光和监视应用的功效。特别是,云层可以部分或完全遮挡目标,并阻止或要求降低光通信系统的数据速率。但是,通过准确表征和预测大气影响,可以减轻许多负面影响。本研究的目的是开发和完善一种最先进的大气预测系统,该系统可生成高分辨率的大气衰减预测,以支持太空激光和监视应用的决策辅助。为了实现这一目标,HPC 和 AI 的进步与数 TB 的高分辨率地面和太空大气数据集合相结合。多种 HPC 资源用于处理本研究所需的地面和卫星数据,并使用四个 NVIDIA Tesla V100 GPU 加速 AI 预测技术的训练和推理。该技术用于进行多时间尺度大气预测:1 小时预测、2 小时以上预测和 48 小时预测。最长 1 小时;最长 2+ 小时;最长 48 小时。最长 1 小时;最长 2+ 小时;最长 48 小时。
我们为智能光伏 (PV) 系统提出了一种多时间尺度能源管理框架,可以计算出电池运行、电力购买和电器使用的优化时间表。智能光伏系统是一个本地能源社区,包括配备光伏板和电池的几栋建筑和家庭。然而,由于光伏发电的不可预测性和快速变化,维持能源平衡并降低系统中的电力成本具有挑战性。我们提出的框架采用模型预测控制方法,采用基于物理的光伏预测模型和精确参数化的电池模型。我们还引入了一个由两个时间尺度组成的多时间尺度结构:一个较长的粗粒度时间尺度,用于每日范围,分辨率为 15 分钟;一个较短的细粒度时间尺度,用于 15 分钟范围,分辨率为 1 秒。与当前的单时间尺度方法相比,这种替代结构能够以合理的计算时间管理快速和慢速系统动态的必要组合,同时保持高精度。模拟结果表明,与基线方法相比,提出的框架可将电力成本降低 48.1%。还展示了多时间尺度的必要性以及对光伏预测和电池方面精确系统建模的影响。
自然语言包含多个时间尺度的信息。要了解人脑如何代表此信息,一种方法是使用从神经网络语言模型(LMS)中提取的表示fMRI对自然语言的反应进行编码模式。但是,这些LM衍生的代表并未在不同的时间表上明确分开信息,因此很难解释编码模型。在这项工作中,我们通过强迫LSTM LM中的单个单位来整合特定时间尺度的信息来构建可解释的多时间尺度表示形式。这使我们能够明确并直接映射每个fMRI Voxel编码的信息的时间尺度。此外,标准fMRI编码过程在编码功能中没有考虑不同的时间属性。我们修改了该过程,以便可以捕获短时和长时间的信息。这种方法超过了其他编码模型,特别是对于代表长时间信息的体素。它还在人类语言途径中提供了时间尺度信息的范围图。这是未来工作的框架,调查了人工和生物语言系统之间的时间层次结构。
自然语言包含多个时间尺度的信息。为了了解人类大脑如何表示这些信息,一种方法是使用从神经网络语言模型 (LM) 中提取的表示来构建预测 fMRI 对自然语言反应的编码模型。然而,这些 LM 衍生的表示没有明确区分不同时间尺度上的信息,这使得解释编码模型变得困难。在这项工作中,我们通过强制 LSTM LM 中的各个单元在特定时间尺度上整合信息来构建可解释的多时间尺度表示。这使我们能够明确而直接地映射每个单独的 fMRI 体素编码的信息的时间尺度。此外,标准 fMRI 编码程序不考虑编码特征中不同的时间属性。我们修改了该程序,使其能够捕获短时间和长时间尺度信息。这种方法优于其他编码模型,特别是对于表示长时间尺度信息的体素。它还提供了人类语言通路中时间尺度信息的更细粒度图。这为未来研究人工和生物语言系统的时间层次提供了一个框架。
b'one 在某种意义上用 O \xe2\x88\x9a \xf0\x9d\x91\xa1 步量子行走代替经典随机游走的 \xf0\x9d\x91\xa1 步。需要注意的是,量子快进只能以非常小的成功概率产生最终状态。然而,在我们的应用中,它以概率 e \xce\xa9 ( 1 ) 成功。这通过一个富有洞察力的论点表明,该论点根据经典随机游走来解释量子快进的成功概率。也就是说,它对应于经典随机游走从一个随机的未标记顶点开始,在 \xf0\x9d\x91\xa1 步后访问一个标记顶点,但在 \xf0\x9d\x91\xa1 个额外步骤后返回到未标记顶点的概率。我们表明,通过调整游走的插值参数,可以将该概率调整为 e \xce\xa9 ( 1 )。在第 2 节中描述了一些准备工作之后,我们在第 3 节中讨论了算法 1 和主要结果,并在第 4 节中提供了分析的细节。在第 5 节中,我们表明 HT + 和 HT 之间的差距确实可能非常大。我们在 \xf0\x9d\x91\x81 \xc3\x97 \xf0\x9d\x91\x81 网格上构造标记元素的排列,其中 HT + = \xce\xa9 ( \xf0\x9d\x91\x81 2 ) 但 HT = O( \xf0\x9d\x91\x93 ( \xf0\x9d\x91\x81 )),其中 \xf0\x9d\x91\x93 任意缓慢地增长到无穷大。这表明当有多个标记元素时,Krovi 等人的算法可能严重不理想。原因是他们的算法实际上解决了一个更难的问题:它从限制在标记顶点的平稳分布中采样(在网格的情况下为均匀分布)。因此,当从该分布中采样比仅仅找到一些标记元素困难得多时,他们的算法可能会很慢。在第 6 节中,我们介绍了第二种更简单的新算法,我们推测 2 可以在 O \xe2\x88\x9a' 时间内找到一个标记元素