当 HV 脚施加大于 40V 的电压时,内部高压电流源 对 V CC 脚外接的电容充电。为防止 V CC 在启动过程中短 路引起的功率损耗而使 IC 过热损坏,当 V CC 电压低于 1V 时,高压电流源的充电电流被限制为 I HV1 ( 1mA )。 当 V CC 大于 1V 后,高压电流源的充电电流变为 4mA_min , V CC 电压会迅速上升。当 V CC 超过启动水平 V CC_ON 时,高压启动电流源关闭。同时, UVLO 置高有 效, IC 内部电路开始工作。
行业领导者在多模式AI中的竞争既快速,又是愤怒,这证明了硬件和软件中尖端技术的快速发展。这始于2023年3月OpenAI的GPT-4推出,随后迅速发行了Google的Gemini版本和Microsoft的Llava13b,这是一种大型视觉模型,于2023年10月发布,以及Claude 3,并于2023年12月首次亮相。在2024年2月,Openai推出了Sora,专门研究文本到视频的一代,标志着这一充满活力的景观中的另一个里程碑。和2024年3月17日,X.AI发布了Grok-1,这是314B令牌Moe模型。随着每个发行版,我们预计技术巨头之间的竞争会加剧。因此,主队必须准备捍卫我们国家的国土安全部。
摘要 - 这项工作介绍了多模式扩散变压器(MDT),这是一种新颖的扩散策略框架,它擅长从多模式目标规范中学习多功能行为,而语言注释很少。MDT利用基于扩散的多模式变压器主链和两个自我监督的辅助目标来掌握基于多模式目标的长马操纵任务。绝大多数模仿学习方法仅从个人目标方式中学习,例如语言或目标图像。但是,现有的大规模模仿学习数据集仅以语言注释为部分标记,这禁止当前的方法从这些数据集中学习语言条件行为。MDT通过引入潜在的目标状态表示来解决这一挑战,该状态表示同时接受多模式目标指令进行培训。此状态表示将基于图像和语言的目标嵌入对齐,并编码足够的信息以预测未来状态。该表示是通过两个自制的辅助目标来训练的,从而增强了提出的变压器主链的性能。MDT在具有挑战性的Calvin和Libero基准提供的164项任务上显示出出色的表现,其中包括包含不到2%语言注释的Libero版本。此外,MDT还建立了关于加尔文操纵挑战的新记录,证明了对先前最新的最新方法的绝对性能提高了15%,该方法需要大规模预处理并包含10倍更多可学习的参数。MDT显示了其在模拟和现实世界环境中稀疏注释的数据中求解长马的能力。演示和代码可在https://intuitive-robots.github.io/mdt policy/。
许多农村社区和小镇正在改善步行,骑自行车,公共交通和出租车服务,以为非驾驶员提供流动性,改善公共健身和健康并支持经济发展。摘要多模式计划创建了社区,可以通过步行,骑自行车和公共交通工具到处走走。这为个人和社区提供了各种直接和间接的好处。本报告探讨了为什么以及如何在农村地区和小镇上实施更多的多模式规划。当前的趋势正在增加对农村社区非自动旅行选择的需求,包括人口老龄化,贫困越来越大,健康和安全问题不断增长以及不断增长的旅游业。各种策略可以帮助农村社区改善和连接步行,骑自行车,公共交通,包括创新的设施和服务以及智能增长发展政策。本报告中描述的新计划资源可以帮助农村社区和小城镇制定综合的多模式计划和计划。
摘要 - 以各种内容,编辑样式和工件为特征的短形式视频的兴起,对基于学习的盲目视频质量评估(BVQA)模型构成了重大挑战。多模式大型语言模型(MLLM)以其出色的概括能力而闻名,提出了有希望的解决方案。本文的重点是有效利用预定的MLLM进行短形式视频质量评估,预处理和响应变异性的影响,以及将MLLM与BVQA模型相结合的见解。我们首先研究了框架预处理和采样技术如何影响MLLM的性能。然后,我们引入了一种基于轻量学习的集合方法,该方法可适应从MLLM和最先进的BVQA模型中进行预测。我们的结果表明,通过提出的集合方法表现出了优越的概括。此外,对内容感知的集合权重的分析强调,某些视频特征并未完全由现有的BVQA模型完全代表,从而揭示了潜在的方向以进一步改善BVQA模型。索引术语 - 视频质量评估,短形式视频,多模式大语模型,内容吸引合奏
在最新的客户创新示例中,他们利用开源平台来开发一种新的方法来分析高密度的脑电图,通过显示两个营养患者(左和中间)的Alpha连接网络的显着差异。尽管行为无反应症,但中间的患者的网络与健康成年人(右)相似,也显示出隐藏意识的证据。2
乳腺癌检测中的精度和及时性对于改善患者预后至关重要。传统的诊断方法主要依赖于单峰方法,但是医学数据分析的最新进展使得超越了传统成像技术以外的各种数据源。本评论认真研究了将组织病理学图像与基因组数据,临床记录和患者历史记录相结合的变革潜力,以提高多模式诊断技术的诊断准确性和全面性。它探讨了早期,中间和晚期融合方法,以及先进的深层多模式融合技术,包括编码器架构,基于注意力的机制和图形神经网络。提供了多模式任务的最新进步,例如视觉问题答案(VQA),报告生成,语义细分和跨模式检索,突出显示了生成AI和视觉语言模型的利用。此外,审查还深入研究了可解释的人工智能(XAI)在阐明复杂诊断算法的决策过程中的作用,强调了对透明性和可解释性的关键需求。通过展示解释性的重要性,我们演示了XAI方法(包括毕业,摇摆,石灰,可训练的注意力和图像字幕),增强诊断精度,增强临床医生的认识和促进患者的参与。该评论还讨论了最新的XAI发展,例如X-Vars,Legrad,Langxai,LVLM-Interpret和Ex-ILP,以证明它们在多模式乳腺癌检测中的潜在效用,同时识别关键的研究差距并提出未来的指导,以推进该文件。
预训练技术使基础模型(如 BERT、T5、GPT)在自然语言处理 (NLP) 和涉及文本、音频和视觉内容的多模态任务中取得了显著成功。一些最新的多模态生成模型,如 DALL·E 和 Stable Diffusion,可以从文本或视频输入中合成新颖的视觉内容,从而大大增强了内容创作者的创造力和生产力。然而,多模态 AI 也面临一些挑战,例如添加新模态或处理需要超出其理解范围的信号的多样化任务。因此,多模态 AI 的一个新趋势是构建一个将现有基础模型与外部模块和工具连接起来的组合 AI 系统。这样,系统可以通过利用不同的模态和信号来执行更多样化的任务。在本文中,我们将简要概述最先进的多模态 AI 技术以及构建组合 AI 系统的方向。我们还将讨论多模态 AI 中潜在的未来研究主题。