摘要:默克尔细胞癌 (MCC) 是一种罕见且极具侵袭性的皮肤癌,常见病因是病毒。事实上,大约 80% 的病例与默克尔细胞多瘤病毒 (MCPyV) 有关;病毒 T 抗原的表达对于病毒阳性肿瘤细胞的生长至关重要。据报道,用于治疗疟疾的药物青蒿琥酯具有额外的抗肿瘤和抗病毒活性,我们试图在临床前评估青蒿琥酯对 MCC 的影响。我们发现青蒿琥酯在体外抑制了 MCPyV 阳性 MCC 细胞的生长和存活。这种影响伴随着大 T 抗原 (LT) 表达的降低。但值得注意的是,它比 shRNA 介导的 LT 表达下调更有效。有趣的是,在一种 MCC 细胞系 (WaGa) 中,T 抗原敲低使细胞对青蒿琥酯的敏感性降低,而对于其他两种 MCC 细胞系,我们无法证实这种关系。从机制上讲,青蒿琥酯主要在 MCPyV 阳性 MCC 细胞中诱导铁死亡,因为已知的铁死亡抑制剂如 DFO、BAF-A1、Fer-1 和 β-巯基乙醇可减少青蒿琥酯诱导的死亡。最后,在异种移植小鼠中应用青蒿琥酯表明,已建立的 MCC 肿瘤的生长可以在体内得到显著抑制。总之,我们的结果揭示了已获批准且通常耐受性良好的抗疟疾化合物青蒿琥酯对 MCPyV 阳性 MCC 细胞具有高度的抗增殖作用,表明其可用于 MCC 治疗。
APOBEC3 酶是先天免疫效应物,可将突变引入病毒基因组。这些酶是胞嘧啶脱氨酶,可将胞嘧啶转化为尿嘧啶。它们优先突变胞嘧啶,然后突变胸腺嘧啶,使 5'TC 基序成为它们的首选目标。病毒已经进化出不同的策略来逃避 APOBEC3 的限制。某些病毒会主动编码对抗 APOBEC3 的病毒蛋白,而另一些病毒则会被动面对 APOBEC3 的选择压力,因为 APOBEC3 靶向基序的基因组已经耗尽。因此,APOBEC3 在某些病毒的基因组上留下了进化的足迹。我们研究的目的是识别这些具有由 APOBEC3 塑造的基因组的病毒。我们分析了 33,400 种人类病毒的基因组,以了解 APO-BEC3 青睐的基序是否耗尽。我们证明 APOBEC3 选择压力影响至少 22% 的目前已注释的所有人类病毒物种。乳头瘤病毒科和多瘤病毒科是足迹最密集的家族;证明选择压力作用于全基因组和两条链。细小病毒科成员在足迹的大小和定位方面具有不同的目标。有趣的是,B19 红细小病毒的两条链上都存在大量 APOBEC3 足迹;这使得该病毒基因组成为 APOBEC3 青睐基序最干净的序列之一。我们还发现地方性冠状病毒科具有显著的足迹。有趣的是,在人畜共患的 MERS-CoV、SARS-CoV-1 和 SARS-CoV-2 冠状病毒上未检测到这样的足迹。除了全基因组足迹的病毒外,某些病毒仅在其基因组的很短部分上留下足迹。这种情况对于γ-疱疹病毒科和腺病毒科来说就是如此,它们的足迹位于裂解性复制起点上。在逆转录的 HIV- 1、HIV-2、HTLV-1 和 HBV 病毒的负链上也可以检测到轻微的足迹。总之,我们的数据说明了 APOBEC3 对人类病毒的选择压力程度,并确定了新的假定 APOBEC3 靶向病毒。
1。Pocosi D,Antonelli G,Pistello M,Maggi F. Torquetenovirus:从长凳到床边的人类病毒素。临床微生物感染。2016; 22(7):589 -593。2。Doberer K,Haupental F,Nackenhorst M等。扭矩Teno病毒载荷与肾移植受者的亚临床同种异体反应性有关:前瞻性观察试验。移植。2021; 105(9):2112- 2118。3。Schiemann M,Puchhammer -StöcklE,Eskandary F等。扭矩Teno病毒载荷 - 与肾移植后抗体介导的重新结合的逆关联。移植。2017; 101(2):360 -367。4。Strassl R,Doberer K,Rasoul -Rockenschaub S等。扭矩Teno病毒用于急性活检的风险分层 - 在肾脏移植受体中证明了同种异体反应性。J感染。2019; 219(12):1934年-1939。5。Strassl R,Schiemann M,Doberer K等。扭矩Teno病毒病毒血症的定量是肾脏同种异体移植受体中传染病的前瞻性生物标志物。J感染。2018; 218(8):1191- 1199。6。Gottlieb J,Reuss A,Mayer K等。肺移植后(Vigilung)研究方案的病毒负荷 - 引导性免疫抑制。试验。2021; 22(1):48。7。Haupenthal F,Rahn J,Maggi F等。试验。2023; 24(1):213。8。Thaunat O.道教研究。9。Am J移植。一项多中心,患者和评估者盲目的,非下等,随机和受控的II期试验,以比较肾脏移植接受者的标准和扭矩Teno病毒的免疫抑制,在移植后的第一年:TTVGuideIT:TTVGUIDEIT。(个人通讯,2023年10月20日)。Doberer K,Schiemann M,Strassl R等。扭矩TENO病毒用于肾移植受体中移植物排斥和感染的风险分层 - 一项前瞻性观察试验。2020; 20(8):2081- 2090。10。gorzer I,Haupental F,Maggi F等验证血浆扭矩TenO病毒载荷,该病毒载量施加了CE认证的PCR,用于肾脏移植后的排斥和感染的风险分层。J Clin Virol。2023; 158:105348。11。Jaksch P,GörzerI,Puchhammer -StöcklE,BondG。固体器官移植中的综合免疫监测:通向Teno Teno病毒 - 引导性免疫抑制的道路。移植。2022; 106(10):1940年 - 1951年。12。Maggi F,Pifferi M,Fornai C等。急性呼吸道疾病儿童的鼻分泌物中的 TT病毒:与病毒血症和疾病严重程度的关系。 J Virol。 2003; 77(4):2418 -2425。 13。 Regele F,Heinzel A,Hu K等。 在肾脏移植受体中停止霉酚酸2周,疫苗接种不会增加对SARS -COV -2疫苗接种的反应,这是一项非随机,受控的先导研究。 前药。 2022; 9:914424。 14。 Benning L,Reineke M,Bundschuh C等。TT病毒:与病毒血症和疾病严重程度的关系。J Virol。2003; 77(4):2418 -2425。13。Regele F,Heinzel A,Hu K等。 在肾脏移植受体中停止霉酚酸2周,疫苗接种不会增加对SARS -COV -2疫苗接种的反应,这是一项非随机,受控的先导研究。 前药。 2022; 9:914424。 14。 Benning L,Reineke M,Bundschuh C等。Regele F,Heinzel A,Hu K等。在肾脏移植受体中停止霉酚酸2周,疫苗接种不会增加对SARS -COV -2疫苗接种的反应,这是一项非随机,受控的先导研究。前药。2022; 9:914424。14。Benning L,Reineke M,Bundschuh C等。定量扭矩Teno病毒负载,以监测肾脏移植受体免疫抑制治疗的短期变化。移植。2023; 107:e363 -e369。15。Bischof N,Hirsch HH,Wehmeier C等。首先降低钙调神经酶抑制剂,用于治疗肾脏移植后的BK多瘤病毒复制:长期结局。肾词表盘移植。2019; 34(7):1240-1250。16。Ginevri F,Azzi A,Hirsch HH等。对多瘤病毒BK复制的前瞻性监测和在小儿肾脏受体中空虚的干预的影响。Am J移植。2007; 7(12):2727- 2735。
简介 肿瘤抑制蛋白 p53 在癌细胞周期中起着至关重要的作用 (1, 2)。大约 50% 的癌症都存在 TP53 基因突变 (2, 3)。在具有 WT p53 的细胞中,由于细胞应激或 DNA 损伤而激活 p53 会导致许多 p53 靶基因的转录激活,从而导致细胞周期停滞、凋亡或衰老 (1, 2, 4)。细胞中的 WT p53 水平受负反馈回路调节。激活的 p53 与 MDM2 基因中的 p53 反应元件结合,导致 MDM2 表达增加。MDM2 蛋白是一种 E3 泛素连接酶,反过来又与 p53 结合并泛素化,导致其被蛋白酶体降解 (5–9)。因此,MDM2 是 p53 的重要调节因子,可以成为具有 WT p53 的癌症的有效治疗靶点。多年来,人们一直对通过药物抑制 MDM2 来稳定 p53 感兴趣,尤其是对于伴有 MDM2 扩增的癌症,包括脂肪肉瘤、尤文氏肉瘤、骨肉瘤和白血病 (2, 10–12)。目前有几种针对 MDM2-p53 相互作用的 MDM2 抑制剂正在临床试验中用于治疗这些癌症 (2),尽管没有一种抑制剂获得 FDA 批准用于任何治疗用途。默克尔细胞癌 (MCC) 是一种高度侵袭性的皮肤神经内分泌癌,发病率很高 (13–15)。MCC 经常转移到淋巴结和远处器官,包括肝脏、骨骼、胰腺、肺和脑 (13–15)。MCC 有两种不同的病因。克隆整合的默克尔细胞多瘤病毒 (MCPyV) 存在于病毒阳性的 MCC (MCCP) 中。这些肿瘤的肿瘤突变负荷较低,具有接近正常的二倍体基因组 (14–20)。相反,病毒阴性 MCC (MCCN) 肿瘤是由慢性紫外线照射引起的,导致高突变负荷和强烈的紫外线突变特征 (14–20)。尽管病因不同,但两种形式的 MCC 都表现出相似的组织学、侵袭性表型和对治疗的反应,表明它们扰乱了相似的致癌途径。虽然 MCCN 通常含有 TP53 和视网膜母细胞瘤肿瘤抑制因子 (RB1) 的功能丧失突变,但 MCCP 通常含有 WT p53 和视网膜母细胞瘤 (RB) 蛋白 (14、15、20–22)。大约 80% 的 MCC 肿瘤是 MCCP,其中大多数具有 WT p53 (16、18、20、23–26)。
估计全世界约有15%是由病毒引起的[1]。这些致癌病毒被归类为RNA(RTV)或DNA肿瘤病毒(DTVS)[1]。There are two human RTVs: hepatitis C virus (HCV) and human T-cell lymphotropic virus-1 (HTLV-1), and five human DTVs: human papilloma virus (HPV), hepatitis B virus (HBV), Epstein–Barr virus (EBV), Kaposi sarcoma-associated herpesvirus (KSHV), and默克尔细胞多瘤病毒(MCPYV)[1]。这些肿瘤病毒(TVS)建立了终身感染并使用多种策略逃避宿主免疫。并非所有电视感染都会引起疾病,既定潜伏期的病毒模式和持久性均干扰正常的细胞过程,有时会导致癌症[1]。特别有趣的是逃避尿嘧啶介导的抗病毒药物的机制,这可能对宿主基因组有害。尿嘧啶是一种非规范的DNA碱基,可以在补充过程中将其掺入DNA或通过单链DNA中的细胞氨酸而化学引入DNA,从而导致诱变u:g不匹配[2]。这些不匹配可以通过激活诱导的胞嘧啶脱氨酶(AID)/载脂蛋白B mRNA编辑催化性多肽蛋白(APOBEC)(APOBEC)来实现通过激活诱导的胞嘧啶脱氨酶(AID)/载脂蛋白B mRNA BRNA BRNA(APOBEC)[3]。AID和APOBEC3(A3)蛋白质的亚科分别在适应性和先天免疫反应中起作用。AID是B细胞成熟蛋白[4,5],该蛋白在B淋巴细胞中表达,进入淋巴结中的生发中心。曾经成熟的B细胞退出生发中心,辅助表达返回到无法检测的水平。辅助活性仅限于表达免疫球蛋白基因的转录气泡,以使抗体库多样化。干扰素信号传导和促炎性细胞因子上调A3蛋白[3]。人类具有7种A3蛋白(A3a,A3b,A3C,A3D/E,A3F,A3G和A3H),可以靶向RNA,逆转录病毒新生cDNA或复制叉中的单链DNA [3]。AID/A3蛋白成功限制了RNA和DNA病毒[3],包括一些RTV和DTV [3,6]。但是,RTV的A3限制已被确定为脱氨酶独立于脱氨酶[6,7],即不是尿嘧啶介导的抗病毒免疫。因此,将不会更详细地讨论RTV。AID/A3尿嘧啶介导的抗病毒免疫通常被表示为“双刃剑”,因为这些有效的病毒限制子可能无法区分宿主和病毒基因组。因此,AID/A3蛋白在DTV发病机理中的作用引起了很大的关注。在这里,我们回顾了当前对DTV逃避尿嘧啶介导的抗病毒免疫的机制的知识。
4. Dunkel IJ、Gardner SL、Garvin JH、Goldman S、Shi W、Finlay JL。高剂量卡铂、噻替派和依托泊苷联合自体干细胞抢救治疗既往接受过放射治疗的复发性髓母细胞瘤患者。神经肿瘤学。2010;12(3):297-303。https://doi.org/10.1093/neuonc/nop031 5. Shih CS、Hale GA、Gronewold L 等人。高剂量化疗联合自体干细胞抢救治疗复发性恶性脑肿瘤儿童。癌症。2008;112(6):1345-1353。https://doi.org/10.1002/cncr.23305 6. Koskenvuo M、Rahiala J、Sadeghi M 等人。同种异体造血干细胞移植儿童的病毒血症合并感染以人类多瘤病毒为主。感染性疾病(伦敦)。2017;49(1):35-41。https://doi.org/10.1080/23744235.2016.1210821 7. Soudani N、Caniza MA、Assaf-Casals A 等人。小儿癌症患者急性呼吸道病毒感染的患病率和特点。医学病毒学杂志。2019;91(7):1191-1201。https://doi.org/10.1002/jmv.25432 8. Ye X、Van JN、Munoz FM 等人。诺如病毒是导致免疫功能低下儿童造血干细胞和实体器官移植接受者腹泻的原因。Am J Transplant 。2015;15(7):1874-1881。https://doi.org/10.1111/ajt.13227 9. Bordon V、Bravo S、Van Renterghem L 等人。儿童同种异体干细胞移植中巨细胞病毒 (CMV) DNA 血症的监测:CMV 感染和疾病的发病率和结果。Transpl Infect Dis 。2008;10(1):19-23。https://doi.org/10.1111/j.1399-3062.2007.00242.x 10. Millen GC、Arnold R、Cazier JB 等人。癌症儿童中 COVID-19 的严重程度:英国儿科冠状病毒癌症监测项目的报告。Br J Cancer。2021;124(4):754-759。https://doi.org/10.1038/s41416-020-01181-0 11. Dong Y, Mo X, Hu Y 等人。中国儿童 COVID-19 流行病学。儿科。2020;145(6):e20200702。https://doi.org/10.1542/peds.2020-0702 12. Mukkada S、Bhakta N、Chantada GL 等人。癌症儿童和青少年(GRCCC)中 SARS-CoV-2 感染的全球特征和结果:一项队列研究。Lancet Oncol。 2021;22(10):1416- 1426。https://doi.org/10.1016/S1470-2045(21)00454-X 13. Peyrl A、Chocholous M、Kieran MW 等人。抗血管生成节拍疗法治疗复发性胚胎性脑肿瘤儿童。儿童血癌。2012;59(3):511-517。https://doi.org/10.1002/pbc。24006 14. Ward CL、Dempsey MH、Ring CJA 等人。用于测量甲型和乙型流感病毒载量的定量实时 PCR 检测的设计和性能测试。临床病毒学杂志。2004;29(3):179-188。 https://doi.org/ 10.1016/S1386-6532(03)00122-7 15. Heim A、Ebnet C、Harste G、Pring-Akerblom P。通过实时 PCR 快速定量检测人类腺病毒 DNA。J Med Virol。2003;70(2):228-239。https://doi.org/10.1002/jmv.10382 16. Fry AM、Chittaganpitch M、Baggett HC 等人。泰国农村地区因呼吸道合胞病毒导致的住院下呼吸道感染负担。PLoS One。2010;5(11):e15098。https://doi.org/ 10.1371/journal.pone.0015098 17. Lu X、Holloway B、Dare RK 等人。实时逆转录 PCR 检测用于全面检测人类鼻病毒。临床微生物学杂志。2008;46(2):533-539。https://doi.org/10.1128/JCM.01739-07 18. Maertzdorf J、Wang CK、Brown JB 等人。实时逆转录 PCR 检测用于检测所有已知遗传谱系的人类亚肺病毒。临床微生物学杂志。2004;42(3):981-986。 https://doi.org/10.1128/JCM.42.3.981-986.2004 19. Corman VM、Landt O、Kaiser M 等。通过实时 RT-PCR 检测 2019 年新型冠状病毒 (2019-nCoV)。欧洲监测。2020;25(3):2000045。https://doi.org/10.2807/1560-7917.ES.2020.25.3.2000045 20. Watkins-Riedel T、Woegerbauer M、Hollemann D、Hufnagl P. 通过实时 PCR 快速诊断肠道病毒感染
DNA 是生命的基本蓝图,由一种长链分子组成,其中包含构建和维持所有生物体的指令。它存在于几乎所有细胞中,能够产生蛋白质并在代际之间传递遗传信息。这个来自鲑鱼精子的 DNA 样本属于德国图宾根大学。了解 DNA 的结构和功能彻底改变了疾病研究、遗传易感性评估、诊断和药物配方。它对每个个体都是独一无二的,这使它成为法医科学、识别犯罪、失踪人员和亲生父母的重要工具。在农业中,DNA 有助于改良牲畜和植物。DNA 的发现可以追溯到 1869 年,当时弗里德里希·米歇尔从白细胞中分离出核蛋白。他观察到它在各种组织中的存在并发现了它的遗传作用。阿尔布雷希特·科塞尔后来将其重新命名为脱氧核糖核酸 (DNA) 并分析了它的化学成分。DNA 的转变始于 20 世纪 30 年代初,当时奥斯瓦尔德·艾弗里在纽约洛克菲勒研究所进行了研究。他发现一种细菌与同种菌株的死细胞混合后会转变成有毒形态。弗雷德·格里菲斯于 1928 年首次观察到这一现象。艾弗里的工作以及柯林·麦克劳德和麦克林·麦卡锡的工作表明,这种转变与 DNA 有关。尽管当时并未得到普遍接受,但艾弗里的发现激发了人们对 DNA 的兴趣。几年后,阿尔弗雷德·赫尔希和玛莎·赫尔希于 1952 年进行的实验证实了 DNA 携带遗传信息。到了 20 世纪 50 年代,研究人员开始研究 DNA 的结构以了解其功能。罗莎琳德·富兰克林和莫里斯·威尔金斯与弗朗西斯·克里克和詹姆斯·沃森于 1953 年揭示了双螺旋模型。该结构由两条相互缠绕的链组成,具有四种互补的核苷酸:腺嘌呤、胞嘧啶、鸟嘌呤和胸腺嘧啶。双螺旋结构允许重建遗传信息,从而实现遗传性状的传递。 DNA 分析对于理解生命的生物机制和由基因突变引起的疾病至关重要。DNA 测序和 PCR 等技术使分析分子和识别基因突变成为可能。科学家还可以操纵和构建新形式的 DNA,称为重组 DNA 或基因克隆,这对于大规模药物生产和基因治疗至关重要。随着时间的推移,对核酸、蛋白质和非蛋白质成分的发现和理解也在不断发展。出生于加拿大哈利法克斯的 Oswald T Avery 发现了有丝分裂细胞分裂和染色体的过程。理查德·阿尔特曼将核蛋白改名为核酸,而约翰·弗里德里希·米歇尔去世。莱纳斯·鲍林引入了遗传学的概念,塞韦罗·奥乔亚诞生。亚历山大·托德创造了“基因”一词,保罗·扎梅克尼克描述了 DNA 的构成要素。所罗门·施皮格尔曼绘制了一条染色体图谱,弗朗西斯·克里克、莫里斯·威尔金斯、亚瑟·科恩伯格、弗雷德里克·桑格、罗莎琳·富兰克林、伊芙琳·威特金、西摩·本泽尔、哈尔·戈宾德·科拉纳、约翰·史密斯、约书亚·莱德伯格、TB·约翰逊和 RD·科格希尔也为该领域做出了重大贡献。其他值得注意的事件包括 PB·约翰逊和 RD·科格希尔检测到甲基化胞嘧啶衍生物是硫酸水解结核酸的副产物,但其他科学家很难复制他们的结果。保罗·伯格、马歇尔·W·尼伦伯格、詹姆斯·D·沃森、吴雷、丹尼尔·内森斯、沃纳·阿伯、富兰克林·斯塔尔、贝弗利·格里芬、芭芭拉·麦克林托克、汉密尔顿·O·史密斯、沃尔特·吉尔伯特、斯坦利·诺曼·科恩、赫伯特·博耶、大卫·巴尔的摩、约翰·E·苏尔斯顿、埃尔温·薛定谔、理查德·J·罗伯茨、克雷格·文特尔诞生。四种碱基比例的一致性是人们不断发现的。镰状细胞病被发现是基因突变的结果。埃丝特·莱德伯格对λ噬菌体有了突破性的发现。纯化的DNA和细胞DNA显示出螺旋结构,标志着首次观察到细菌对病毒的改造。DNA在保存遗传密码方面比蛋白质更重要这一点变得清晰起来。DNA的双螺旋结构通过三篇《自然》杂志发表的文章得到证实。莱纳斯·鲍林因其在氨基酸方面的工作获得了诺贝尔奖。弗雷德里克·桑格完成了胰岛素氨基酸的完整序列,而病毒被重构,RNA被发现。信使RNA首次被发现,DNA聚合酶被分离纯化,用于复制DNA。维克多·英格拉姆利用桑格测序技术破解了镰状细胞性贫血背后的遗传密码。弗朗西斯·克里克提出了遗传物质控制蛋白质合成的主要功能。首次实现了体外DNA合成。桑格获得了他的第一个诺贝尔化学奖,为理解基因调控和蛋白质合成步骤铺平了道路。美国国家生物医学研究基金会的成立标志着核酸测序新时代的开始。芭芭拉·麦克林托克发现了“跳跃基因”,同时破解了编码机制。桑格的研究导致了限制酶的发现,紫外线诱变可以通过暗曝光逆转。转移RNA成为第一个被测序的核酸分子,全面的蛋白质序列发表在《蛋白质序列和结构图集》上。遗传密码首次被总结,沃纳·阿伯尔预测了限制酶作为实验室工具的使用。发现了连接酶(一种促进 DNA 链连接的酶),并开发了自动蛋白质测序仪。从杂交细胞中分离出染色体,并组装了功能性噬菌体基因组。发表了 PCR 原理,并从黄石温泉中分离出一种新细菌。产生了生成重组 DNA 分子的概念。在分子生物学的早期,取得了一些重要的里程碑,为现代基因工程铺平了道路。关键事件包括: - 分离和鉴定人类或其他哺乳动物染色体的第一个限制性酶。 - 发现和分离逆转录酶。 - 发表了一种称为修复复制的过程,用于通过聚合酶合成短 DNA 双链和单链 DNA。 - 构建第一个质粒细菌克隆载体。 - 报道噬菌体 lambda DNA 的完整序列。 - 由于安全问题,Janet Mertz 在细菌中克隆重组 DNA 的实验被叫停。 - 首次发表了使用限制性酶切割 DNA 的实验。 - 关于重组 DNA 技术的生物危害的讨论公开化。 - 生成了第一个重组 DNA。 - Janet Mertz 和 Ronald Davis 发表了一种易于使用的重组 DNA 构建技术,该技术表明,当用限制性酶 EcoRI 切割 DNA 时,DNA 会产生粘性末端。 - 报道了 24 个碱基对的测序,以及细菌中 DNA 修复机制的发现 - SOS 反应。 - 开发了 Ames 测试来识别破坏 DNA 的化学物质。 - 首次举办人类基因图谱国际研讨会。 - DNA 首次成功地从一种生命形式转移到另一种生命形式。 - 重组基因研究开始受到监管。 - 重组 DNA 在大肠杆菌中成功复制,随后呼吁暂时停止基因工程,直到采取措施处理潜在的生物危害。 - Mertz 完成了她的博士学位,Sanger 和 Coulson 发表了他们的 DNA 测序加减法。 - DNA 甲基化被认为是胚胎中 X 染色体沉默的机制,并被认为是控制高等生物基因表达的重要机制。 - 阿西洛马会议呼吁自愿暂停基因工程研究。 - 酵母基因首次在大肠杆菌中表达。 - 原癌基因被认为是正常细胞遗传机制的一部分,在发育细胞中发挥着重要作用。 - NIH 发布了重组 DNA 实验指南。 - 人类生长激素经基因工程改造。 - 确定噬菌体 phi X174 DNA 的完整序列。 - 编写了第一个帮助汇编和分析 DNA 序列数据的计算机程序。 - 发表了两种不同的 DNA 测序方法,可以快速对长片段 DNA 进行测序。 - 在大肠杆菌中产生人类胰岛素。 - 诺贝尔奖表彰限制性酶的发现及其在分子遗传学问题中的应用。 - Biogen 为克隆乙型肝炎 DNA 和抗原的技术提交了初步的英国专利。- 爱丁堡大学科学家克隆出第一条 Epstein Barr 病毒 DNA 片段。 - 巴斯德研究所科学家报告成功分离并克隆大肠杆菌中的乙肝病毒 DNA 片段。 - 加州大学旧金山分校科学家宣布成功在大肠杆菌中克隆并表达 HBsAg。 - Biogen 申请欧洲专利,以克隆显示乙肝抗原特异性的 DNA 片段。 这一年,基因工程和 DNA 测序取得了重大进展。第一个基因克隆专利获得批准,为进一步的研究铺平了道路。塞萨尔·米尔斯坦提出使用重组 DNA 来改进单克隆抗体,而桑格获得了他的第二个诺贝尔化学奖。欧洲分子生物学实验室召开了计算和 DNA 序列会议,标志着该领域的一个里程碑。多瘤病毒 DNA 被测序,加州大学旧金山分校的科学家发表了一种在癌细胞中培养 HBsAg 抗原的方法。科学家报告首次成功开发转基因小鼠,同时世界上最大的核酸序列数据库通过电话网络免费开放。第一批转基因植物和小鼠被报道出来,展示了基因工程的威力。研究表明,Upjohn 开发的细胞毒性药物阿扎胞苷可抑制 DNA 甲基化。NIH 同意在 5 年内提供 320 万美元来建立和维护核酸序列数据库。第一种重组 DNA 药物获得批准,在肿瘤样本的胞嘧啶-鸟嘌呤 (CpG) 岛上发现 DNA 甲基化普遍缺失。聚合酶链反应 (PCR) 技术开始被开发作为扩增 DNA 的手段。PCR 实验的结果开始被报道,同时开发了针对乙型肝炎的转基因疫苗,并揭示了第一个基因指纹。嵌合单克隆抗体被开发出来,为更安全、更有效的单克隆抗体疗法奠定了基础。卡罗尔·格雷德 (Carol Greider) 和伊丽莎白·布莱克本 (Elizabeth Blackburn) 宣布发现端粒酶,这是一种在染色体末端添加额外 DNA 碱基的酶。DNA 甲基化被发现发生在称为 CpG 岛的特定 DNA 片段上,而 Mullis 和 Cetus 公司则为 PCR 技术申请了专利。DNA 指纹识别原理被提出,第一起使用 DNA 指纹识别解决的法律案件被解决。聚合酶链式反应 (PCR) 技术被发表,同时还有人类基因组测序计划。开发了一种用于自动进行 DNA 测序的机器,并创建了第一个人源化单克隆抗体。一种针对乙肝的基因工程疫苗获得批准,而干扰素被批准用于治疗毛细胞白血病。美国建立了监管框架来规范生物技术产品的开发和引进。比利时和美国批准了 Engerix-B 等基因工程乙肝疫苗。小规模临床试验的结果公布,包括一项针对输血后慢性乙型肝炎的重组干扰素-α疗法的试验。mRNA被封装到由阳离子脂质制成的脂质体中,并注射到小鼠细胞中,产生蛋白质。Campath-1H被制造出来——这是第一个临床上有用的人源化单克隆抗体。美国国会资助基因组测序,同时开发了一种快速搜索计算机程序来识别新序列中的基因。第一个催化甲基转移到DNA的哺乳动物酶(DNA甲基转移酶,DNMT)被克隆。比利时和美国批准了基因工程乙型肝炎疫苗,标志着基因工程和DNA测序的重大进步。法国和美国的基因突破导致癌症研究、基因测序和DNA分析方面的重大发现。乙型肝炎和囊性纤维化等疾病的疫苗和治疗方法的批准标志着医学科学的重大进步。DNA甲基化研究揭示了其与癌症发展和进展的联系。人类基因组计划正式启动,旨在对整个人类基因组进行测序,并在对包括细菌、病毒和哺乳动物在内的各种生物的基因组进行测序方面取得了重大里程碑。创新的 DNA 测序技术彻底改变了我们对基因进化、疾病诊断和个性化治疗的理解。研究人员已成功应用该技术研究肺炎链球菌对疫苗应用的快速适应。MinION 手持式 DNA 测序仪还被用于识别新生儿重症监护室中 MRSA 爆发的源头。除了在医学上的应用外,DNA 测序在了解神经系统疾病状况和识别防止生物衰老的罕见基因突变方面发挥了至关重要的作用。该技术还被用于预测哪些女性可以从化疗中受益,以及扫描婴儿和儿童的罕见疾病。此外,蛋白质结构的研究对于开发各种疾病的有效治疗方法至关重要。蛋白质由长链氨基酸组成,这些氨基酸扭曲并弯曲成独特的 3D 形状,使它们能够与其他分子相互作用并引发生物反应。蛋白质的形状可能因一个氨基酸的变化而改变,从而导致危及生命的疾病。了解蛋白质结构已导致医学领域取得重大突破,包括发现 HIV 蛋白酶结构,这有助于科学家设计有效的艾滋病治疗方法。此外,这些知识使研究人员能够识别致病病毒和细菌的致命弱点,为更有针对性和更有效的治疗铺平了道路。发现 HIV 蛋白酶的形状对于了解它如何感染细胞至关重要,最终导致开发出蛋白酶抑制剂等有效药物。这些突破将艾滋病毒治疗从死刑变成了可控的疾病,使人们能够长期与病毒共存。然而,艾滋病毒以进化和适应而闻名,随着时间的推移,一些治疗方法的效果会降低。研究人员目前正在研究新一代艾滋病毒蛋白酶抑制剂,以对抗这些耐药病毒株。在相关进展中,科学家们已经确定了艾滋病毒表面的一个不变区域,人类抗体可以靶向该区域,这有望阻止全球近 90% 的艾滋病毒株。这一发现为改进疫苗设计和可能改变一系列疾病生活的治疗方法铺平了道路。基于这些发现,研究人员正在探索对抗流感病毒的新方法,并在临床前试验中取得了令人鼓舞的结果。这项研究的更广泛影响可能导致更有效、更方便、副作用更少的各种医疗状况的治疗方法。