地热能用于供暖和发电的利用有望为实现欧盟净零排放环境的目标做出重大贡献。为了提高地热植物的效率,对生产管中流体流动行为的透彻理解至关重要。地热流体通常包含在高压下溶解的气体,随着流体上升到表面,它们会部分释放。本研究将利用基于Python的软件工具来评估现有的多相流模型,以预测地热井的流量行为。通过分析来自几个操作地热井的数据,我们将确定最能与实际领域条件保持一致的模型。本文的发现将对流动动力学有更深入的见解,并提出对地热能系统的优化策略。SWM可以在6个月的时间内担任“ Werkstudent”的位置。如果有兴趣,请联系:Clemens.langbauer@unileoben.ac.at Clemens Langbauer博士。
PEG(环境与地质资源过程)研究部门围绕矿物化学(湿法冶金、形态形成、沉淀、结晶)这一中心主题,在过程工程和地质过程方面开展研究,实现从纳米到千米空间尺度变化的多相和多物理模型。该部门汇集了一个由大约十名讲师研究员组成的多学科社区,他们一方面具有过程工程和结晶背景,另一方面具有地球科学背景。该部门隶属于两个 CNRS 单位,包括 Georges Friedel 实验室(UMR CNRS 5307),负责工业维度的过程工程主题。在这种环境下,待填补的职位是 SPIN 中心其他部门更广泛动态的一部分,旨在开发过程工程无机化学。尽管SPIN中心,更具体地说是PEG部门,目前汇集了与地球科学、结晶、热力学、湿法冶金和多相流有关的多项技能,并希望加强无机化学方面的实验技能,以支持该部门现有的主题:
摘要:跨介质飞行器是一种既能在水中潜航,又能在空中飞行的新型概念飞行器。本文基于多旋翼无人机入出水结构模型,设计了一种新型水空多介质跨介质飞行器。基于设计的跨介质飞行器结构模型,利用OpenFOAM开源数值平台进行单介质气动特性分析和多介质跨介质流动分析。采用滑移网格计算单介质空气旋翼和水下螺旋桨的旋转流动特性。为防止网格运动变形引起的数值发散,采用重叠网格法和多相流技术对跨介质飞行器入出水进行数值模拟。通过以上分析,验证了跨介质车辆在不同介质中的流场特性,并得到了跨介质过程中不同入水角度下车体载荷及姿态的变化情况。
热电能量转化引起了人们日益增长的兴趣,这是一种潜在的浪费收集,发电和冷却应用的技术。微型/纳米级传热效应由于对声子和电子传输的影响而在热电能量转化的效率中起着重要作用。微/纳米级传热对于一系列新兴技术,例如微/纳米技术,信息技术,生物技术和低碳能源应用也至关重要。本期特刊旨在全面概述热电材料和微型/纳米级传热的最新进展。本期特刊欢迎原始的研究文章和评论。潜在的研究领域包括(但不限于)以下主题: - 热电发电; - 热电冷却; - 微/纳米级热电材料; - 微/纳米级的多相流和传热; - 微/纳米级的热物理特性 - 微/纳米结构中的界面热传输; - 低维材料; - 声子和电子传输; - 电子 - Phonon相互作用。
摘要 沸腾传热是液体的显热传递和汽化引起的潜热传递的结合。为了研究沸腾中的显热传递,液-气多相流中液体的温度测量必须发挥重要作用。尽管已经提出了几种用于沸腾现象温度测量的光学方法,但由于许多沸腾气泡对照明和观察的干扰,直接测量相对较高热流密度下的沸腾温度场具有挑战性。本研究提出了一种新颖的温度测量方法,利用密闭空间、两块透明板之间的夹层空间和双色激光诱导荧光温度测量来测量多个沸腾气泡周围的液体温度分布。密闭空间限制了流体运动,使得可以照亮和观察几乎整个感兴趣的区域。两种荧光染料的强度比显示了局部和时间温度,而无需任何物理探针的侵入。我们成功地观察到了过热液体从传热表面的清除,证明了该方法的实用性。利用该方法从实验数据中提取出的多个位置的温度时间变化与沸腾气泡的行为相一致,并对该方法尚待解决的问题进行了讨论。
a 印度 Shoolini 大学先进化学科学学院,索兰,喜马偕尔邦 173229 b 越南同奈洛宏大学先进能源与环境应用材料重点实验室 c 印度理工学院曼迪分校基础科学学院和先进材料研究中心,卡曼德,曼迪 175075,喜马偕尔邦,印度 d 沙特阿拉伯吉达国王阿卜杜勒阿齐兹大学先进材料研究卓越中心,邮政信箱 80203,吉达 21589 e 沙特阿拉伯吉达国王阿卜杜勒阿齐兹大学理学院化学系,邮政信箱 80203,吉达,沙特阿拉伯 f 艾克斯-马赛大学、CNRS、IRD、INRA、Coll France、CEREGE,艾克斯-普罗旺斯 13100,法国 g 西安交通大学国际可再生能源研究中心、动力工程多相流国家重点实验室中国陕西科技大学环境科学与工程学院,西安 710021,中国维新大学研究与发展研究所,岘港 550000,越南维新大学环境与化学工程学院,岘港 550000,越南
诸如 COVID-19 之类的传染病的传播取决于病原体与流体相之间复杂的流体动力学相互作用,包括单个液滴和多相云。了解这些相互作用对于预测和控制疾病传播至关重要。这适用于人类和动物的呼气,例如咳嗽和打喷嚏,以及在各种室内和室外环境中产生微米级液滴的破裂气泡。通过探索这方面的案例研究,本研究考察了疾病传播中流体动力学的新兴领域,重点关注多相流、界面流、湍流、病原体、人流、气溶胶传播、通风和呼吸微环境。这些结果表明,增加通风率和局部通风方法可以有效降低个体之间直接呼吸空间中含有 SARS-CoV-2 的气溶胶浓度。在置换通风的房间中,无论是否有测试对象,中性和不稳定条件都能更有效地从空气中去除吸入的含有 SARS-CoV-2 的气溶胶。然而,稳定的环境可能会增加居住在密闭空间中的个人感染风险。因此,本研究的结果可为控制空气传播感染提供实用指导。
2选修区A:力学中的高级模块8结构耐用性。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。9断裂力学。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。10计算可塑性。。。。。。。。。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>11冰川和冰的力学对不起。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>13特殊现实简介。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。14个分析力学。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。15有限元III:计算流体动力学的稳定方法。。。。。。。。。。。。。。。。。。。17空气动力学II。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。19应用结构优化。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。多相流中的20个基本现象。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。22个界面流的动力学。。。。。。。。。。。。。。。。。。。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>23高级流体力学II。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>24个用于计算流体动力学的高准确方法。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>26机器动力学。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。流体力学中的数学方法:精确和对称方法。。。。。。。。。。。。。。。。。。。流体力学中的30种数学方法:常规和奇异扰动。。。。。。。。。。。。。。。。32多相流。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。34湍流建模。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。35纳米和微流体i。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。37纳米和微流体II。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。37纳米和微流体II。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。39非线性动力学。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。41计算空气动力学。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。43个应用动力学的数值方法。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。44流体中传输过程的计算建模。。。。。。。。。。。。。。。。。。。。。。。。。。。。46流的数值模拟。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。47流量模拟的高级方法。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。49材料科学IV:机械性能。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。50材料科学的微力学。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。51
在地质力学风险下模拟CO 2存储通常涉及由于多相流和地质力学之间的耦合而导致的大量计算成本。实施标准工作流程,例如位置优化,使用此类耦合物理模型可以显着增加计算开销,并使模型不切实际地使用。我们研究使用深度学习模型以显着减少与模拟和量化CO 2存储的地质力学风险相关的计算开销的可行性。所提出的方法利用基于深度学习的替代建模来显着提高耦合流动地球力学模拟的效率,以识别合适的注入井位置以存储CO 2。使用模拟数据,我们训练U-NET卷积神经网络,以了解井位置和空间分布的模型参数(渗透率)之间的映射到感兴趣的仿真输出。一旦经过固定的模型输入参数训练,U-NET模型可以将不同的井位置场景映射到相应的压力场,CO 2饱和度和地质力学输出,包括垂直位移和塑性应变。随后采用U-NET模型作为替代识别注入井位置所需的耦合流动地球力学模拟以最大程度地减少地质力学风险所需的有效工具。我们报告的初步结果表明,受过训练的U-NET模型可以预测井位置的压力和饱和场,所有其他输入仍与训练中使用的仿真模型保持一致。我们在不同的假设下研究网络的性能,并估计不同的流量和地质力学输出。结果表明,U-NET模型可以通过使用快速代理模型替换耦合物理模拟来大大降低井位置工作流的计算成本,该模型可用于预测与不同的井位置和注入策略相关的地质机械风险。开发的框架可用于改善耦合物理建模的计算需求,并促进其在决策工作流程和现场管理中的应用。
Agbaglah, Gbemeho 流体动力学不稳定性,计算流体力学,液滴/气泡,雾化和空气动力学 Almubarak, Yara 软机器人,水下机器人,智能材料 2115 7-1989 YaraAlmubarak@wayne.edu Arava, Leela(纳米材料,能源存储主任 2140 7-1986 larava@wayne.edu 研究生院) Ayorinde, Emmanuel 结构复合材料力学 2148 7-5548 emmanuel.ayorinde@wayne.edu Ghaffari, A zad 地面和空中自主车辆的安全导航 2142 -- aghaffari@wayne.edu Hasan, M. Arif 拓扑声学,量子-经典 2138 7-3905 Hasan.Arif@wayne.edu 类比,机械超材料 Chalhoub, Nabil (主席) 动力学,振动,控制 2105 7-3753 ab9714@wayne.edu Islam, Mahbub ReaxFF 和 eReaxFF 分子动力学 (MD),2119 7-3885 gy5553@wayne.edu 密度泛函理论 (DFT),锂离子界面化学,金属硫电池 Jansons, Marcis 发动机技术,燃烧,光学 2125 7-3880 mjansons@wayne.edu 诊断 Ku, Jerry 电动汽车和电池 2117 7-3814 jku@wayne.ed 建模仿真和控制,传热和燃烧 Lai, Ming-Chia 热流体工程,能源,2123 7-3893 lai@eng.wayne.edu 推进 Newaz, Golam 先进材料,复合材料 2135 7-3877 gnewaz@eng.wayne.edu Ozbeki, Ali 有限元方法,产品开发和设计 2146 7-3796 ozbeki@wayne.edu Pylypchuk, Valery 振动,动力学和稳定性 2118 7-1233 pilipchuk@wayne.edu Samimi-Abianeh, Omid 热力学,燃烧,多相流 2127 7-3782 o.samimi@wayne.edu (本科研究主任) Tan, Chin-An 动力学,结构和生物系统控制 2137 7-3888 tan@wayne.edu Wu, Sean F. 声学,振动,噪声控制和信号处理 2133 7-3884 swu@eng.wayne.edu Wu, Xin 材料加工与制造 2144 7-3882 xwu@eng.wayne.edu 员工