在地质力学风险下模拟CO 2存储通常涉及由于多相流和地质力学之间的耦合而导致的大量计算成本。实施标准工作流程,例如位置优化,使用此类耦合物理模型可以显着增加计算开销,并使模型不切实际地使用。我们研究使用深度学习模型以显着减少与模拟和量化CO 2存储的地质力学风险相关的计算开销的可行性。所提出的方法利用基于深度学习的替代建模来显着提高耦合流动地球力学模拟的效率,以识别合适的注入井位置以存储CO 2。使用模拟数据,我们训练U-NET卷积神经网络,以了解井位置和空间分布的模型参数(渗透率)之间的映射到感兴趣的仿真输出。一旦经过固定的模型输入参数训练,U-NET模型可以将不同的井位置场景映射到相应的压力场,CO 2饱和度和地质力学输出,包括垂直位移和塑性应变。随后采用U-NET模型作为替代识别注入井位置所需的耦合流动地球力学模拟以最大程度地减少地质力学风险所需的有效工具。我们报告的初步结果表明,受过训练的U-NET模型可以预测井位置的压力和饱和场,所有其他输入仍与训练中使用的仿真模型保持一致。我们在不同的假设下研究网络的性能,并估计不同的流量和地质力学输出。结果表明,U-NET模型可以通过使用快速代理模型替换耦合物理模拟来大大降低井位置工作流的计算成本,该模型可用于预测与不同的井位置和注入策略相关的地质机械风险。开发的框架可用于改善耦合物理建模的计算需求,并促进其在决策工作流程和现场管理中的应用。
主要关键词