光场的四波混频 (FWM) 已广泛应用于量子信息处理、传感和存储。它还构成了非线性光谱的基础,例如瞬态光栅、受激拉曼和光子回波,其中相位匹配用于选择物质三阶响应的所需分量。在这里,我们报告了一项实验研究,研究了由 FWM 在热 Rb 蒸汽中产生的一对压缩光束的二维量子噪声强度差谱。该测量揭示了由强泵浦场引起的 AC 斯塔克位移所修饰的 χ (3) 磁化率的细节,与经典的探测和共轭光束强度测量相比具有更高的光谱分辨率。我们展示了如何利用压缩光的量子关联作为光谱工具,与经典工具不同,它对外部噪声具有鲁棒性。
在1980年代初期,这个想法就实现了一个量子模拟器,以研究复杂且棘手的量子系统的特定动力学。[1-3]通常,与重新构建通用量子计算机(QC)相比,对实验平台建立模拟量子模拟器(AQ)的要求仍然较少。[4]是通用的,后者可能会运行任何算法,包括任何数字量子模拟。以数字方式操作,将需要前所未有的操作性限制才能重新构建相关的巨大开销,以采用Quanth误差校正。aqs被预计在可能可用的QC可用之前可能不太容易解决感兴趣的物理。[5]在许多不同的实验平台中的巨大进步驱动到QC和量子计量学的许多不同的实验平台中,许多针对AQSS的方法正在开发中。[6–8]由于非大学性,每种方法仍然适合于特定的任务集。仍然可以制定一些通用要求。CIRAC和Zoller State
©2024,作者,根据Springer Nature Limited的独家许可。保留所有权利。本文只能下载供个人使用。任何其他用途都需要事先获得版权持有人的许可。记录的版本可在线在http://doi.org/10.1038/s41565-023-01593-y上获得。
摘要:借助2010/31/欧盟指令,从2020年开始,所有新建筑物应几乎为零能源建筑物(NZEB),目的是强烈降低与建筑部门相关的能源消耗。为了实现这一目标,专注于建筑信封的设计并不足够。智能和有效的能源管理是必要的。此外,为了确保在建筑环境中采用RES系统,需要进一步开发创新的技术,以提高其成本效益,能源效率和整合能力。本文提出了一个综合的多能系统的综合,设计和操作优化,该系统由欧洲项目回复的传统和创新的可再生技术组成。基于沼气的微型加油单元,轻质玻璃光伏模块,一种被动可变几何形状的小型风力涡轮机,可针对城市环境优化,基于相变材料的潜热热存储是重新认知项目中开发的一些技术。优化问题可以解决(a)最佳设计以及(b)使用混合整数非线性编程,考虑投资和运营成本的一组技术的最佳操作。优化适用于该项目期间在欧洲各个城市(都灵(意大利),科比(英国),塞萨洛尼基(希腊),克鲁伊·纳波卡(Cluj-Napoca)(罗马尼亚)。仿真结果表明,通过优化策略对新技术的开发和最佳开发提供了成本(11%至42%)和排放(10%至25%)(在10%至25%之间)的重要收益,从而管理建筑物进口/出口能源和充电/充电/排出存储周期。
与大多数癌症一样,CRC 由一组分子异质性亚型组成,每种亚型都具有一系列基因组和表观基因组改变以及不同的肿瘤驱动因素。这种异质性使得标准的“一刀切”式 CRC 治疗方法无效。另一个重大挑战是,某些 CRC(例如 EOCRC)的致病机制仍然不太清楚,对其分子特征的了解仍然很少。如果没有这样的见解,相关临床前模型的开发也将无法实现。因此,使用生理相关的人类临床前模型系统进行全面研究以描述疾病发病机制的潜在分子基础的需求既迫切又尚未得到满足。这样的研究不仅可以揭示疾病机制,还可以确保发现的转化潜力仍然很高。
零值(ZT)模型假定所有用户,设备和网络流量在经过证明之前不应视为信任。零值模型强调了验证和认证每个用户和设备的重要性,并根据最低特权的原则限制对资源的访问。根据零值模型的原则,在成功呈现了基于不同因素的身份验证凭证和访问权限之后,将授予设备访问权限,例如用户身份,设备健康,位置和行为。然后将访问控件连续评估和更新为用户属性,位置和行为更改。零值模型可以应用于各个领域(医疗保健,制造,金融服务,政府等)提供一种全面的网络安全方法,以帮助组织降低风险和保护关键资产。本文旨在对零信任模型,其原理及其应用程序进行全面,深入的分析,并向希望采用这种方法的组织提出建议。我们探讨了零信任框架的主要组成部分及其在不同实践领域的集成。最后,我们就用户和设备的安全性和隐私性提供了有关零信任模型中开放研究问题的有见地的讨论。本文应帮助研究人员和从业人员了解零信托框架的重要性,并采用零信任模型,以实现其网络的有效安全性,隐私和弹性。
持续分数类型的扩展目的(除其他属性)提供了越来越好的实际数字合理性二磷酸近似值。更重要的是,预期的多维持续分数将产生越来越更好的理性近似值,具有相同的分母B旧p上p左括号n右括号n右括号基线除以q上额本额外额外的额外额外额外的额外括号n右括号n右括号n右额外的左额外额外的固定额外的固定额外的固定额外的基线置于左额外的基线,并置于固定的左额外的固定范围内置额的固定范围内的右置态固定范围内的右手置态置于固定范围内的右手置态,并置于左右的左态,并置于左右的固定。 COMMA ELLIPSIS P下标D上标左括号n右括号基线除以Q上标左括号n右括号n右括号右括号右括号n下标n double double doupter n p(n) /q(n) /q(n)=(p(n)1 /q(n)1 /q(n)1 /q(n),。< /div> < /div> < /div> < /div> < /div>。。p(n)d /q(n))n∈Nd -tuples粗体斜体alpha等于左括号alpha 1 comma ouripsis chripsis comma comma comma comma alpha alpha下标d基线右括号α=(α1,。< /div>,。< /div>。。,αd)实数,分数p下标i上标左括号n右括号基线除以q superscript左括号n右括号n右括号p(n)i /q(n)i /q(n),收敛到lpha sisscriptiαiαiiαiiαiiαiiαi小于或等于i小于或等于或等于或等于或等于或等于或等于d或equals d by或equals d by或equal d f d f d by或equals d by或equals d use。已知通常的常规持续分数为正实数提供了极好的(甚至是最好的)合理近似值[41,89]。
热电材料经过几十年的发展,在理论和实验上都取得了长足的进步。随着热电性能的不断提高,材料中引入的缺陷也日趋复杂,为了优化热电性能,在热电材料中引入了零维点缺陷、一维线缺陷、二维面缺陷和三维体缺陷。考虑到各类缺陷的不同特点,深入了解它们在热电输运过程中的作用至关重要。本文对不同类型的缺陷对能带结构、载流子和声子的输运行为等缺陷相关的物理影响进行了分类和总结,并总结了缺陷的实验表征和理论模拟的最新成果,以便准确确定用于热电材料设计的缺陷类型。最后,基于目前的理论和实验成果,综述了利用多维缺陷优化热电性能的策略。
(HbO) 和脱氧 (HbR) 血红蛋白可以分别评估 HbO 和 HbR 的浓度变化。1 尽管 fNIRS 信号被认为对运动具有相对耐受性,2 但是由于运动伪影引起的光强度突然变化,数据质量可能会降低。3 结果表明,两种波长的动态特性为伪影检测和校正提供了重要信息。4 然而,当前用于运动伪影校正的技术(例如小波滤波、分解、样条插值等)通常假设两种波长的行为在时间上相似,因此无法利用两种波长提供的结构化信息。5 – 7 二维 (2D) 分析要求对具有更多维度的数据(例如 fNIRS 数据)在处理之前进行表面展开,例如分别处理两种波长或 HbO 和 HbR。因此,其中一些二维分析工具被迫施加其他非生理约束,例如主成分分析(PCA)中的正交性或独立成分分析(ICA)的统计独立性。尽管有几种方法可以实现 PCA,例如降维、分类、从信号分解的角度来看,PCA 旨在提取所谓的主成分,即可解释 fNIRS 中信号活动最大方差的成分。6、7、10、11 在时间 PCA 中,数据被分解为成分之和,每个成分由两个向量的乘积形成:一个代表时间主成分,另一个代表相应的地形(每个通道的分数)。PCA 的一个基本问题是仅由两个特征(时间和空间)定义的成分不是唯一确定的。因此,不同成分的对应时间特征之间必须具有正交性。 7、12、13然而,脑信号之间的正交性是一种非生理约束。即使有这种限制,提取的主成分也不是完全唯一的,因为任意旋转轴不会改变数据的解释方差。这导致研究人员使用不同的数学标准作为选择特定旋转的基础(例如,Varimax、Quartimax 和 Promax)。在 fNIRS 中,PCA 还被应用于目标时间间隔(tPCA),即仅在与发音或其他头部运动相关的伪影发生的期间,而不是在整个未分割的信号期间。3、14与基于小波的滤波和样条插值相比,这种类型的有针对性的校正可以产生更好的信号质量,同时也降低了改变信号整体完整性的风险。3虽然 PCA 非常常见且易于使用,一些作者已经讨论了其作为伪影校正方法的缺陷和注意事项。5、15