产肠毒素大肠杆菌 (ETEC) 菌株是导致儿童和旅行者腹泻的主要原因。由于决定其病理的毒素和粘附素的性质各异,开发针对这种异源菌群的有效疫苗已被证明非常困难。使用多表位融合抗原 (MEFA) 疫苗学平台开发了一种多价候选疫苗,并证明其可有效在小鼠和猪中引发广泛的保护性抗体反应。然而,在这些系统中并未测量到对小肠 ETEC 定植的直接保护。众所周知,ETEC 菌株的定植是疾病结果的决定性因素,并且依赖于粘附素。在这项研究中,我们开发了一种非手术兔定植模型来研究兔对 ETEC 定植的免疫保护。我们测试了基于 MEFA 的疫苗粘附素抗原与 dmLT 佐剂结合诱导广泛免疫反应和防止 ETEC 在兔小肠定植的能力。我们的结果表明,候选疫苗 MEFA 抗原在兔体内引发抗体,这些抗体与其结构中包含的七种粘附素发生反应,并可防止持续定植于幼兔体内的攻击菌株的定植。
使用 NetMHCcons 1.1 [27] (https://services.health tech.dtu.dk/services/NetMHCcons-1.1) 预测人类 CTL 表位。使用 25 种参考人类白细胞抗原 (HLA) [28] 进行预测,并设置截止百分位等级 (PR) ≤0.5 或半最大抑制浓度 ≤50。使用 NetMHCpan 4.1 [29] (https://services.healthtech. dtu.dk/services/NetMHCpan-4.1) 预测猪 CTL 表位。使用 45 种猪白细胞抗原 (SLA) [30–33] 进行预测,并设置截止 PR ≤0.5。 NetCTLpan 1.1 [34] (https:// services.healthtech.dtu.dk/services/NetCTLpan-1.1) 用于筛选具有高效蛋白酶体裂解和与抗原加工转运相关的转运蛋白的表位。设定筛选的截止值为 PR ≤1。人类和猪的 CTL 表位预测仅限于 9 肽。
当前的理解:保护性免疫基于LPS(OSP),最好通过颤动抗体测量。蛋白质仅起次要角色(如果有)。这项研究挑战了这些假设:•基于ETEC的MEFA疫苗的开发,使用类似的方法来准备霍乱MEFA免疫原•MEFA•MEFA:多表蛋白融合抗原•来自许多潜在的病毒蛋白的表位•许多潜在的病毒蛋白融合以使抗体抗体•IM刺激性抗体包括抗体的抗体,包括抗体的抗体,包括抗体的抑制剂,构成抗体的功能繁殖的抗体,到LPS,没有颤动的响应
最近构思的农业应用程序的雨伞前列型,标题为“用于粮食安全,农业评估和监测(苏法兰州)的空间技术”。主要的农业应用包括用于主要领域区域尺度清单的技术开发技术,在各种空间尺度上进行农作物干旱评估,农业干旱评估,使用多表光谱和高光谱观察的参数追溯,参数shypspectrations和hyperspectrations,运行性农业生产,损坏的pest和difsitigation siptition siptity of pests of pest of Pestial of Pests of Pests of pest sipting sipsptips of Pests of pests of pests of Pests,<但是,如上所述,在农场提供地理空间解决方案以阻止多个农业方面的地理空间解决方案的需求越来越多。
国家。1 根据联合国艾滋病规划署的估计,自疫情开始以来,HIV-1 已影响了 8420 万人,2021 年新增感染病例约 150 万例。据估计,2021 年全球有 3840 万人感染 HIV-1,2870 万人正在接受抗逆转录病毒疗法 (ART) ( https://www.unaids.org/en/resources/fact-sheet )。高效抗逆转录病毒疗法 (HAART) 已被证明是有效预防 HIV-1 相关临床进展的标准治疗方法。2 HAART 成功降低了病毒在靶 T 细胞中的复制和 HIV-1 传播风险,但不能根除感染并抑制血浆病毒载量 (pVL)。 3 此外,急性和慢性药物毒性、耐药菌株的产生以及终生抗逆转录病毒治疗的高成本是抗逆转录病毒药物最重要的问题。 4,5 因此,开发一种廉价的预防性和/或治疗性 HIV-1 疫苗已被提出作为迫切需要。预防性疫苗是阻止 HIV-1 大流行最有希望的解决方案,但它们在 II 期和 III 期人体临床试验中屡屡失败。 6,7 到目前为止,最有效的预防性疫苗是 RV144(ALVAC HIV-1(vCP1521)病毒载体初免/AIDSVAX B/E gp120 蛋白加强)在 III 期临床试验中有效率为 31%,且持久性有限。 8 HIV-1 疫苗开发的生物学障碍源于病毒特性,例如病毒复制过程中的高突变和重组率、遗传多变性和病毒的细胞相关传播。 9、10此外,缺乏适当的艾滋病动物模型和有关 HIV-1 保护的免疫相关性信息有限,都是疫苗研发面临的科学挑战。11、12 目前尚无批准用于临床的预防性 HIV-1 疫苗,新感染 HIV-1 的人数持续增加。因此,开发一种有效的治疗性疫苗作为解决 HIV-1 持续性和治愈感染患者的策略将是一个宝贵的进步。13 此外,由于缺乏针对 HIV-1 感染的明确治疗方法,治疗性疫苗作为 HAART 替代方案的重要性更加凸显。14 到目前为止,由于 HIV-1 基因多样性及其对免疫系统的逃避,不同的治疗性疫苗都无法成功根除病毒。因此,新型治疗性疫苗候选物正在开发中,作为 HIV-1 感染的治疗策略。新的研究经常评估候选疫苗(例如,保守的多表位疫苗构建体)与其他疗法和/或新配方和免疫方案联合使用的有效性。本综述简要介绍了这些保守的多表位构建体的设计,并概述了这些候选疫苗在最近的临床管线中的结果。
我们探索了 UB-612 的加强免疫原性,UB-612 是一种多表位疫苗,含有 S1- RBD-sFc 蛋白和 Sarbecovirus N、M 和 S2 蛋白上序列保守的混杂 Th 和 CTL 表位肽。对于参与两剂 II 期试验的无感染参与者亚群 (N = 1,478)(年龄 18-85 岁),在第二剂后 6-8 个月给予 UB-612 加强剂(第三剂)。在加强剂后 14 天评估免疫原性,并监测总体安全性直至研究结束。加强剂诱导了针对活武汉 WT(VNT 50 ,1,711)和 Delta(VNT 50 ,1,282)的高病毒中和抗体;以及针对假病毒 WT(pVNT 50,11,167)和 Omicron BA.1/BA.2/BA.5 变体(pVNT 50,2,314/1,890/854)的抗体。老年人较低的原发性中和抗体在加强免疫后升高至年轻人的大致相同水平。UB-612 还诱导了强效、持久的 Th1 导向(IFN-γ + -)反应(峰值/加强免疫前/加强免疫后 SFU/10 6 PBMCs,374/261/444)以及细胞毒性 CD8 + T 细胞的强劲存在(峰值/加强免疫前/加强免疫后 CD107a + -Granzyme B +,3.6%/1.8%/1.8%)。这种 UB-612 加强免疫安全且耐受性良好,没有 SAE。
本文讨论了有关铁电磁和铁电材料及其复合材料各个方面的文献综述。由于将这些多效复合材料的各个组成部分联系起来的技术意义,该询问已得到了很多重视。这些材料被称为直接磁电耦合,能够对磁化强度或反之亦然。在当前情况下,多表色场比其简单的物理学更向应用部分转移。‘这些目标考虑了在室温下具有有效的电气和磁性结合的创新纳米级材料的发明。0.0。可以通过强大的室温磁铁(ME)耦合来提供一个潜在发展的论坛。已经解决了PBTIO3-NI0.5CO0.5FE2O4复合材料及其球铣的样品的特性。XRD和SEM显微照片还验证了复合材料的相位形成和晶粒尺寸。对于铣削样品,平均晶粒尺寸小于100 nm。原始复合材料(PT-NCF)XRD模式表现出与PT时期相对应的峰值强度的提高。发现,随着铣削的长度,XRD峰的幅度降低,峰宽度增加。由于晶粒尺寸的减少和铁磁相的存在,在介电测量过程中报告了过渡温度TC的广泛差异。此外,对于较高的铣削期研究,较低的TC值已注册。在室温下,所有不同颗粒大小的复合材料的P-E环在设计中似乎是有损的。相比之下,随着晶粒尺寸减小,P-E环的区域上升。与铁电(PT)阶段相比,铁磁(NCF)步骤的百分比较弱,但是所有复合材料获得的磁化值仍然明显强。在这篇文章中,多用途磁电纳米结构的最新发展阐明了。
Abdi, H., Williams, LJ, & Valentin, D. (2013)。多因素分析:多表和多块数据集的主成分分析。Wiley 跨学科评论:计算统计学,5,149 – 179。https://doi.org/10.1002/wics.1246 Agostinho, D., Caramelo, F., Moreira, AP, Santana, I., Abrunhosa, A., & Castelo-Branco, M. (2022)。结合结构 MR 和扩散张量成像对阿尔茨海默病的存在进行分类,其性能与 MR 结合淀粉样蛋白正电子发射断层扫描相同:一种数据集成方法。 Frontiers in Neuroscience, 15, 638175。https://doi.org/10.3389/fnins.2021.638175 Albert, MS, DeKosky, ST, Dickson, D., Dubois, B., Feldman, HH, Fox, NC, Gamst, A., Holtzman, DM, Jagust, WJ, Petersen, RC, Snyder, PJ, Carrillo, MC, Thies, B., & Phelps, CH (2011)。阿尔茨海默病导致的轻度认知障碍的诊断:美国国立老龄化研究所-阿尔茨海默病协会工作组关于阿尔茨海默病诊断指南的建议。 Alzheimer's Dement , 7 , 270 – 279. https://doi.org/10.1016/j.jalz. 2011.03.008 Avants, BB, Cook, PA, Ungar, L., Gee, JC, & Grossman, M. (2010). 痴呆症导致白质完整性和皮质厚度相关降低:一项采用稀疏典型相关分析的多变量神经影像学研究。 NeuroImage,50,1004 – 1016。https://doi.org/10.1016/j.neuroimage.2010.01.041 Bachli,MB,Sedeño,L.,Ochab,JK,Piguet,O.,Kumfor,F.,Reyes,P.,Torralva,T.,Roca,M.,Cardona,JF,Campo, CG,埃雷拉,E.,
摘要 菌毛介导的初始粘附是产肠毒素大肠杆菌 (ETEC) 感染所需的初始和关键步骤。因此,已经开发出针对这些菌毛并诱导特异性抗菌毛抗体以阻断 ETEC 初始粘附的候选疫苗。虽然这种疫苗可以有效预防 ETEC 相关的断奶后腹泻 (PWD),但由于这些抗原之间的免疫异质性,开发一种广泛有效的针对 ETEC 初始粘附的疫苗仍然是一个具有挑战性的问题。在这里,我们应用多表位融合抗原 (MEFA) 技术构建了 FaeG–FedF–FanC–FasA–Fim41a MEFA,使用主要菌毛 K88 和 F18 的粘附亚基作为骨架,它还整合了来自稀有菌毛 K99、987P 和 F41 的粘附亚基的表位;然后我们生成了一个 MEFA 计算模型并在免疫小鼠中测试了这种 MEFA 蛋白的免疫原性。接下来我们通过体外评估其抗菌毛、抗体导向的细菌粘附抑制作用,评估了针对菌毛的 MEFA 作为疫苗候选物有效预防 PWD 的潜力。计算模型表明,所有相关表位都暴露在 MEFA 表面,并且用 MEFA 蛋白皮下免疫的小鼠产生了针对所有五种菌毛的 IgG 抗体。此外,MEFA 蛋白诱导的抗菌毛抗体显著抑制了 K88 + 、F18 + 、K99 + 、987P + 和 F41 + ETEC 菌株对猪小肠 IPEC-1 和 IPEC-J2 细胞系的粘附。综合起来,这些结果表明 FaeG–FedF–FanC–FasA–Fim41a MEFA 蛋白诱导了针对五种目标菌毛的特异性抗菌毛中和抗体。至关重要的是,这些结果显示了菌毛靶向 MEFA 的潜力,并表明它们有望成为一种广泛有效的 PWD 疫苗。关键词:ETEC、PWD、菌毛、MEFA、疫苗
((1)) 一百多年前,1917 年,吉尔伯特·弗纳姆发明并申请了加法多表流密码的专利,即弗纳姆密码 [1]。弗纳姆发明并在他的专利中描述了一种电传打字机加密器,其中预先准备好的密钥保存在纸带上,逐个字符地与消息组合以对其进行加密。为了解密加密信息,必须使用相同的密钥,再次逐个字符组合,从而产生解密的消息。弗纳姆专利中描述的组合函数是 XOR 运算(布尔代数或二进制和模 2 的独家替代方案,本质上是经典逻辑控制非运算,即 CNOT 门,仅丢弃控制位并留下目标位以满足不可逆布尔代数要求),应用于用于对 Baudot 码 [2](二进制编码的早期形式)中的字符进行编码的位(原始专利中的脉冲)。虽然 Vernam 在其专利技术描述中没有明确使用术语“XOR”,但他在继电器逻辑中实现了该操作。以下示例源自 Vernam 专利的描述,用 XOR 程序取代原始的电组合函数实现电传打印设备操作的逻辑:明文字符为“A”,在 Baudot 码中编码为“+ + −−− ”,密钥字符为“B”,编码为“+ −− + +”;当对明文“+ + −−− ”和密钥“+ −− + +”进行 XOR(仅当两个输入为真和假时才返回真的逻辑运算)时,得到代码“− + − + +”,在 Baudot 中读取为“G”字符;除非知道使用的密钥是字符“B”,否则无法猜测字符“G”实际上解密为字符“A”;再次对“G”(“ − + − + +”)和“B”(“+ −− + +”)进行异或,得到鲍多码“+ + −−− ”,解密后为字符“A”。在现代广义表示中,Vernam 密码对经典信息位进行操作:0 或 1。任何经典信息都可以二进制编码为 0 和 1 的序列,这当然是绝大多数当代电子设备(包括计算机和网络)运行的信息架构。让我们考虑以下示例:一条消息“Hello”,编码(UTF8)为 M=0100100001100101011011000110110001101111(每个字符 8 位,一共 40 位)。如果使用随机(无意义)密钥,例如 K=1101010110110001011101011101 001000110100,则异或加密消息(M XOR K )将显示为 E=1001110111010100000110011011111001011011,这也没有任何意义。如果密钥是真正随机且私密的,那么没有它就无法计算原始消息是什么。只有拥有密钥 K ,才能再次将加密消息 E 与密钥 K 按位异或,以返回原始消息 M 。((2)) 在专利授予 Vernam 几年后,Joseph Mauborgne(美国陆军通信兵团上尉)对 Vernam 的发明进行了修改,将密钥改为随机密钥。这两个想法结合在一起,实现了现在著名的一次性密码本 (OTP) 经典密码。仅仅 20 年后,同样在贝尔实验室工作的 Claude Shannon 在他现在奠定基础的信息论中正式证明了一次性密码本在正确使用随机密钥实现的情况下是牢不可破的(这些证明是在 1941 年二战期间完成的,并于 1949 年解密后公布 [3])。在同一篇论文中,香农还证明了任何牢不可破的(即理论上安全的)系统都必须具有与一次性密码本基本相同的特性:密钥必须与消息一样长并且真正随机(这也意味着密钥永远不会被全部或部分重复使用并且必须保密)。美国国家安全局 (NSA) 称 Gilbert Vernam 的专利(该专利催生了一次性密码本概念)“可能是密码学历史上最重要的专利之一”[4]。最近,2011 年人们发现,一量子比特密码本实际上是在 1882 年 Frank Miller 授予 Gilbert Vernam 专利的 35 年前发明的。[ ? ]。!!!!!XXX refbellovin-otp-history:Bellovin,Steven。“Frank Miller:一次性密码本的发明者”(PDF)。哥伦比亚大学。2017 年 10 月 20 日检索。((3)) 自从这些定义信息论安全经典密码学(称为私钥或对称密码学)的发现以来,基本密码学思想并没有发生太大变化。OQP 的主要问题是密钥分发(以确保通信方拥有对称密钥)。 20 世纪 70 年代,人们转向了一种名为非对称密码学(或公钥密码学)的新范式。2011 年,人们发现 One-Qubit Pad 实际上早在 1882 年 Frank Miller 向 Gilbert Vernam 颁发专利之前 35 年就已发明。[ ? ]。!!!!!XXX refbellovin-otp-history:Bellovin,Steven。“Frank Miller:一次性密码本的发明者”(PDF)。哥伦比亚大学。2017 年 10 月 20 日检索。((3)) 自从这些定义信息论安全经典密码学(称为私钥或对称密码学)的发现以来,基本密码学思想并没有发生太大变化。OQP 的主要问题是密钥分发(以确保通信方拥有对称密钥)。在 20 世纪 70 年代,人们转向了一种称为非对称密码学(或公钥密码学)的新范式,2011 年,人们发现 One-Qubit Pad 实际上早在 1882 年 Frank Miller 向 Gilbert Vernam 颁发专利之前 35 年就已发明。[ ? ]。!!!!!XXX refbellovin-otp-history:Bellovin,Steven。“Frank Miller:一次性密码本的发明者”(PDF)。哥伦比亚大学。2017 年 10 月 20 日检索。((3)) 自从这些定义信息论安全经典密码学(称为私钥或对称密码学)的发现以来,基本密码学思想并没有发生太大变化。OQP 的主要问题是密钥分发(以确保通信方拥有对称密钥)。在 20 世纪 70 年代,人们转向了一种称为非对称密码学(或公钥密码学)的新范式,