传统的还原主义方法已成功地用于获得有关单基因疾病和疾病的知识。然而,这种策略不足以探测和理解诸如糖尿病,代谢综合征(MS)和胰岛素相关疾病之类的复杂疾病,其中多种基因和系统受到干扰。理解这种复杂的相互关系和串扰需要整体或系统级集成,这可以通过单词/综合多摩学方法来实现。本研究主题探讨了单词和综合多摩s分析如何改变我们对代谢综合征,糖尿病和胰岛素相关疾病的机制,生物标志物和治疗靶标的复杂网络的理解。与还原主义的方法不同,单词/多摩斯技术为复杂疾病提供了整体观点,强调了它们有可能促进个性化医学的潜力,并具有针对性的疗法,并在针对这些疾病的情况下为这些疾病提供了新的希望。
人类癌细胞系的药物敏感性预测模型构成了在临床前环境中识别潜在反应性因素的重要工具。整合从一系列异质数据中得出的信息至关重要,但仍然是不平凡的,因为数据结构的差异可能会阻碍拟合算法将足够的权重分配给不同的OMIC数据中包含的互补信息。为了抵消这种效果,该效果倾向于仅导致一种数据类型主导所谓的多摩斯模型,我们开发了一种新颖的工具,使用户能够在第一步中分别训练单摩尼斯模型,并在第二步中将它们集成到多摩s模型中。进行了广泛的消融研究,以促进对奇异数据类型及其组合的各自贡献的深入评估,从而有效地识别它们之间的冗余和相互依赖性。此外,单词模型的集成通过一系列不同的分类算法实现,从而可以进行性能比较。被发现与药物敏感性显着转移相关的分子事件和组织类型集可以返回,以促进对药物反应性潜在驱动因素的全面而直接的分析。我们的两步方法产生了一组实际的多媒体泛 - 批处理分类模型,这些模型对GDSC数据库中的大多数药物具有很高的预测。在具有特定作用模式的有针对性药物的背景下,其预测性能与将多词数据合并到简单的一步方法中的分类模型相比。此外,案例研究表明,它在正确识别已知的特定药物化合物的关键驱动因素以及为其他候选者提供其他药物敏感性因素方面取得了成功。
如分子生物学的中心教条所示,DNA,RNA和蛋白之间的相互作用是生物过程的基础。现代生物学预训练的模型在分析这些大分子方面取得了巨大的成功,但它们的感染性质仍未得到探索。在本文中,我们遵循Central Dogma的指导来重新设计数据和模型管道,并提供一个全面的框架,即生命代码,这些框架涵盖了不同的生物功能。至于数据流,我们提出了一条统一的管道来通过将RNA转录并反向翻译为基于核苷酸的序列来整合多词数据。至于模型,我们设计了一个密码子令牌和混合长期架构,以用遮罩的建模预训练编码编码和非编码区域的相互作用。通过编码序列对翻译和折叠过程进行建模,生命代码通过从现成的蛋白质语言模型中的知识分离来学习相应的氨基酸的蛋白质结构。这样的设计使生命代码能够在遗传序列中捕获复杂的相互作用,从而更全面地了解了与中央教条的多摩学。广泛的实验表明,生命代码在三个OMIC的各种任务上实现了状态绩效,突出了其进步多摩学分析和解释的潜力。
1* Unisa STEM,南澳大利亚大学,Mawson Lakes,Adelaide 6,5095,SA,澳大利亚。7 2农业和食品,英联邦科学与工业研究8组织,26 Pembroke Rd,Marsfield,2122,新南威尔士州,澳大利亚。9 3澳大利亚精密健康中心,南澳大利亚大学,阿德莱德10号,澳大利亚,5000,澳大利亚。11 4 Unisa Allied Health and Human Expormast,南12澳大利亚大学,阿德莱德,SA,5000,澳大利亚。13 5南澳大利亚卫生与医学研究所(SAHMRI),南澳大利亚大学14号,阿德莱德大学,澳大利亚5000,澳大利亚。15 6南澳大利亚大学未来工业学院,莫森16湖,阿德莱德,5095,澳大利亚,澳大利亚。17 7应用人工智能研究所,迪金大学,75 Pigdons 18 Rd,Victoria,3216,澳大利亚墨尔本。19 8达利大学工程学院,达利2号,达利,671003,中国20号。21
抽象的慢性耳鸣是一种中枢神经系统疾病。当前,肠道菌群对耳鸣的影响仍未探索。为了探索肠道菌群与耳鸣之间的联系,我们在70名耳鸣和30名健康志愿者的患者组中进行了16S rRNA测序,对粪便菌群和血清代谢组分分析进行了16s rRNA测序。我们使用加权基因共表达网络方法来分析肠道菌群与血清代谢产物之间的关系。随机森林技术被用来选择代谢物和肠道分类单元来构建预测模型。耳鸣组中明显的肠道营养不良,其特征是细菌多样性降低,富公司/细菌的比率增加,并且包括气或细菌在内的一些机会性细菌富含。相比之下,一些有益的肠道益生菌减少了,包括乳杆菌和乳杆菌科。在血清MIC分析中,耳鸣患者和这些差异代谢产物的血清代谢障碍富含神经炎症,神经递质活性和突触功能的途径。预测模型在测试集中表现出出色的诊断性能,达到0.94(95%CI:0.85-0.98)和0.96(95%CI:0.86-0.99)。我们的研究表明,肠道微生物群的变化可能会影响耳鸣的发生的出身和慢性,并通过血清代谢产物的变化发挥调节作用。总体而言,这项研究提供了对肠道微生物群和血清代谢产物在耳鸣的发病机理中潜在作用的新看法,并提出了“肠道 - 脑耳 - 耳朵”的概念,作为耳鸣的病理机制,具有明显的临床诊断含义和治疗潜力。
质量控制; QQQ,三倍四倍; q-tof,四杆飞行时间; RF,随机森林; RFLP,终末限制片段长度多态性; RMSE,根平方错误; RNA-seq,RNA测序; SBL,结扎测序; SBS,通过合成测序; SCD,心脏猝死; SGD,随机梯度下降; SIDS,婴儿死亡综合症; Silac,氨基酸在细胞培养中稳定的异位标记; Sirm,稳定的同位素分辨代谢组学; SMRT,单分子,实时; SNP,单核苷酸多态性; SQT,简短的QT综合征;德克萨斯州东南部的Stafs应用法医学; STLFR,单管长片段读取; str,短串联重复; SVM,支持向量机; SVM,支持向量机; tadr,胸主动脉
胰腺腺癌(PDAC)是一种快速发展的癌症,对免疫疗法的反应较差。肿瘤内三级淋巴结构(TLS)与罕见的长期PDAC幸存者有关,但是TLS在PDAC中的作用及其在较大的较大肿瘤微环境的背景下仍然未知。,我们产生了一个空间多膜大图,其中包括与联合免疫疗法治疗的患者的26个PDAC肿瘤。使用机器学习支持的H&E图像分类模型和无监督的基因表达矩阵分解方法用于空间转录组学,我们表征了跨越不同形态和免疫疗法的TLS壁ni中的细胞状态。无监督的学习产生了TLS特异性的空间基因表达特征,该信号与PDAC患者的生存率有了显着关联。这些分析表明,病理反应者中与TLS相关的肿瘤内B细胞成熟,并通过空间蛋白质组学和BCR分析证实。我们的研究还确定了病理免疫反应的空间特征,揭示了TLS成熟与IgG/IgA分布和细胞外基质重塑共定位。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2024年8月9日。 https://doi.org/10.1101/2024.08.07.607041 doi:biorxiv Preprint
阿尔茨海默氏病(AD)是一种复杂的神经退行性疾病,其特征是进行性认知能力下降,记忆力丧失和日常功能障碍。这是全球痴呆症的最常见原因,影响了数百万个人,并对医疗保健系统和社会造成了重大负担(Brookmeyer等,2007; Nichols等,2022)。AD的病因是多因素的,涉及遗传,环境和表观遗传因素的结合(Breijyeh和Karaman,2020年)。目前,在某些情况下,AD诊断涉及病史,身体检查,神经心理学检查和脑脊液分析的结合。成像是一种支持工具,并有助于排除其他认知障碍的原因。但是,专业人士的全面评估对于准确的诊断至关重要(Rodrigue,2013; Duckure and Dickson,2019; Porsteinsson等,2021)。鉴于这些诊断挑战,了解潜在的生物学过程,并确定可靠的生物标志物以早期检测和准确的诊断对于制定有效的治疗策略和干预措施至关重要。近年来,高通量技术的持续进步为探索分子层的复杂疾病提供了前所未有的机会。这些技术改进不仅增加了可用的OMICS平台的多样性,而且增加了它们的解决方案。虽然对单个OMICS平台的分析提供了独特的视角,并捕获了与感兴趣特征相关的特定分子变化,但这种方法也限制了我们对复杂发病机理基础的完整分子景观的理解。为了解决这一限制,人们对跨多个OMIC平台的数据集成(即“多派”)越来越感兴趣,以全面探索在多个生物学层面上发生的相互作用和变化。多摩s集成旨在捕捉生物系统的更广泛的视野,因此在揭开生物领域的复杂分子相互作用方面具有巨大的希望(Ivanisevic and Sewduth,2023年)。这种知识对于增强我们对驱动复杂疾病(例如AD)的基本机制的理解至关重要,并促进了个性化和有针对性的疗法的发展。在这项研究中,我们介绍了四个OMIC平台的综合分析,包括单核苷酸多态性(SNP),甲基化(CPG),转录组(RNA)和蛋白质组学数据,以表征AD的生物学特征。利用宗教秩序的研究与记忆和衰老项目(Rosmap)(Bennett等人,2012年Bennett等,2012),由被分类为无认知障碍(NCI),轻度认知障碍(MCI)和AD患者的个体组成的个体,我们采用综合疾病的方法来预测每个疾病的状态。随后,我们利用了广义规范相关分析(SGCCA)(Kettenring,1971; Tenenhaus等,2014)的变体来集成四个数据集并识别与广告参与者的多摩学特征。
Policlinico tor vergata大学医院,牛津81号,罗马00133,意大利b罗马医学系,罗马 - 罗马大学00133,意大利大学医学系,意大利大学医学系,意大利C C CC 00133和森林系统(DIBAF),托斯西亚大学,01100 ITALY E e VITERBO,Rome Tor Vergata大学生物学系,00133 00133意大利罗马,Policlinico tor Vergata University Hospital,Via oxford 81,00133 Rome,Inte Inter of Lille,Inserm,Inserm,Inserm,Inserm of Policlenico tor Vergata University Hospital,Via oxford 81埃吉德(Egid),法国埃吉德(Egid)天主教大学内科系,00168意大利00168 I FONDAZIONE POLICLINICO INCORLIORIO A. GEMELLI IRCCS,00168罗马,意大利J糖尿病和营养科学Policlinico tor vergata大学医院,牛津81号,罗马00133,意大利b罗马医学系,罗马 - 罗马大学00133,意大利大学医学系,意大利大学医学系,意大利C C CC 00133和森林系统(DIBAF),托斯西亚大学,01100 ITALY E e VITERBO,Rome Tor Vergata大学生物学系,00133 00133意大利罗马,Policlinico tor Vergata University Hospital,Via oxford 81,00133 Rome,Inte Inter of Lille,Inserm,Inserm,Inserm,Inserm of Policlenico tor Vergata University Hospital,Via oxford 81埃吉德(Egid),法国埃吉德(Egid)天主教大学内科系,00168意大利00168 I FONDAZIONE POLICLINICO INCORLIORIO A. GEMELLI IRCCS,00168罗马,意大利J糖尿病和营养科学Policlinico tor vergata大学医院,牛津81号,罗马00133,意大利b罗马医学系,罗马 - 罗马大学00133,意大利大学医学系,意大利大学医学系,意大利C C CC 00133和森林系统(DIBAF),托斯西亚大学,01100 ITALY E e VITERBO,Rome Tor Vergata大学生物学系,00133 00133意大利罗马,Policlinico tor Vergata University Hospital,Via oxford 81,00133 Rome,Inte Inter of Lille,Inserm,Inserm,Inserm,Inserm of Policlenico tor Vergata University Hospital,Via oxford 81埃吉德(Egid),法国埃吉德(Egid)天主教大学内科系,00168意大利00168 I FONDAZIONE POLICLINICO INCORLIORIO A. GEMELLI IRCCS,00168罗马,意大利J糖尿病和营养科学
