摘要 — 本文提出了一种用于多频带带通滤波器 (MBPF) 的相似变换方法,将星型拓扑转换为直列拓扑。介绍了一种通用理论技术,用耦合矩阵的相似变换旋转代替传统的通过滤波器综合逐步提取 LC 电路,解决了参数提取过程中的舍入误差,提高了理论综合结果的准确性。直列拓扑的应用大大提高了滤波器设计的灵活性,降低了电路复杂性,简化了高阶 MBPF 的制造。基于基片集成波导 (SIW) 技术,设计和实现了一系列示例,包括三频、四频,特别是首次报道的五频三阶切比雪夫 SIW 带通滤波器。模拟响应与测量结果之间具有良好的一致性,验证了设计的滤波器模型和提出的理论方法。
表 1:MRI 评估时间表 ...................................................................................................................... 8 表 2:ACR 单切片矢状回波参数 ...................................................................................................... 11 表 3:ACR 切片轴向 T1 加权自旋回波参数 ........................................................................................ 12 表 4:T1 3D 体积序列 ...................................................................................................................... 16 表 5:多频带静息态 fMRI 序列参数 ............................................................................................. 18 表 6:NM-MT 序列 ............................................................................................................................. 21 表 7:多壳扩散张量成像 ................................................................................................................ 22 表 8:3D T2 FLAIR 序列 ................................................................................................................ 23 表 9:MRI 系列描述 ........................................................................................................................ 24 表 10:静息态 fMRI 序列(备用参数) ........................................................................................ 36 表 11:扩散张量成像序列(备用参数)参数)................................................ 37
T2:射频前端无源器件的 SoC 集成 射频前端无源器件(如 SAW 滤波器和双工器)已被证明难以集成为低成本 CMOS SoC 的一部分。传统的射频设计并不适用,因为片上螺旋电感的品质因数不高,而且片上电容器的制造差异会限制性能。继续使用片外前端无源器件的重要后果是:成本更高、物理空间更大、PCB 和封装设计更复杂,特别是对于多模和多频带应用(如蜂窝或软件定义无线电)。在本教程中,我们首先研究前端无源器件的系统级要求,并从电路的角度讨论 SoC 实施挑战。然后,我们介绍几种可以解决这些问题的架构和电路级技术,然后是 2G 和 3G 收发器的案例研究。
摘要。可重构天线代表了现代无线通信的一项关键创新,可动态控制天线频率、辐射模式和极化等参数。这种适应性对于满足下一代通信系统日益增长的需求至关重要,包括 5G/6G 网络、认知无线电和物联网 (IoT)。通过集成 PIN 二极管、MEMS 和可调材料等技术,可重构天线可以适应不同的环境和操作条件,在带宽、效率和干扰缓解方面提供增强的性能。该领域的最新发展侧重于小型化、多频带操作以及与人工智能 (AI) 等先进技术的集成以实现智能重构。超材料和液晶等智能材料为实现天线设计的更大灵活性提供了新方法。可重构天线的应用正在扩展到各个领域,从航空航天和国防到医疗保健和可穿戴设备。尽管取得了重大进展,但在优化成本、功耗和可靠性方面仍然存在挑战。
下一代无线、机器学习和其他计算密集型应用的需求呈非线性增长,这导致了 Versal™ ACAP AI 引擎的开发。AI 引擎、双核 Arm ® Cortex™-A72 和 Cortex-R5F 处理器 (PS) 以及下一代可编程逻辑 (PL) 都与高带宽 NoC 结合在一起,在 ACAP 中形成了一种新架构。AI 引擎和 PL 旨在相互补充,以处理与其优势相匹配的功能。凭借自定义内存层次结构、AI 互连上的多播流功能和 AI 优化的矢量指令支持,Versal ACAP AI 引擎针对各种计算密集型应用进行了优化,例如,支持所有传统无线电功能以及宽带/多频带功能的高级无线电系统、5G 无线通信(无需基于矢量 DSP 的 ASIC)以及通过实现确定性延迟和低神经网络延迟以及可接受的性能在数据中心应用中加速机器学习推理。
摘要:无线传感器网络和物联网受益于近年来功耗方面的进步,以实现智能控制实体。电池技术的类似进步使这些系统变得自主。然而,这种方法不足以满足现代应用的需求。为这些传感器供电的另一种解决方案是使用其环境中可用的能量,例如热能、机械振动、光能或无线电频率。然而,传感器通常放置在功率密度较低的环境中。本研究调查了与其他来源相比的无线电频率能量收集。在展示了在宽频带上收集能量的潜力后,进行了一项统计研究,以确定城市环境和农村地区的射频功率密度。多频带射频收集器系统旨在收集多个频带中的能量,以显示何时有多个射频源可用。当系统设计为在宽频带上运行时,可以增加收集的能量量。在本研究中,使用高级设计软件 (ADS) 制作了为无线传感器供电的多频带射频能量收集器。根据设计结果,所提出的能源收集方案在 GSM900 和 GSM1800 频段上效果更好。 关键词:能源收集器;无线网络;无线电源 1 引言 如今,监控我们所处环境的需求越来越重要,这使我们能够管理自己的行为;一个典型的例子就是天气预报。 现代传感器是小型、独立的设备,可对其周围环境进行简单的测量。 它们用于观察许多物理现象,如温度、压力、亮度等,这对于许多工业和科学应用至关重要。 传感器的作用是将物理量转换为可利用的电量,例如计算机可用的数字信号。 接口可以通过有线链路或无线方式进行,多年来一直如此。 同时,微电子和微机械领域的最新进展使得能够以合理的成本生产体积为几立方毫米的组件,同时功耗要求不断降低。微型传感器可以制成一个完整的嵌入式系统,部署多个微型传感器以自主方式收集环境数据并将其传输到一个或多个收集点,从而形成无线传感器网络 (WSN)。为这些传感器供电的传统方式是使用电池,但电池的能量有限,耗尽时需要更换。更换电池的维护成本可能很高,尤其是对于位于难以接近位置的传感器。在这种情况下,另一种自供电方式将是有利的,而能量收集则提供了这一潜力。1.1 能量收集 用于为传感器供电的能量收集系统由五个不同的模块组成,如图 1 所示。系统的第一级是能量传感器。它提供物理量作为输出,可用作能量转换级的输入。传感器的工作原理基于物理或化学效应。主要有六类:热、机械、光学、磁、电和化学 [1]。
传统的金属和N型掺杂的半导体材料是新兴的Epsilon – Near -near -Zero(ENZ)材料,展示了非线性光子应用的巨大潜力。然而,这种材料的一个重要限制是缺乏多功能的ENZ波长调整,因此,对ENZ波长的动态调整仍然是一个技术挑战,从而限制了其潜在应用,例如多频带通信。在此,通过光激发后极性形成/解耦的孔浓度的可逆变化以及可调的enz波长移动,可以观察到PSS膜中的ENZ波长的动态调整,从而可以通过可逆的孔浓度变化来实现PSS膜。关于极性激发超快速动力学的实验研究表明,北极子积累的〜80 fs时间常数,北极子解耦的〜280 fs时间常数,表明在子picosocecond时尺度内的enz波长逆转超快切换的潜力。这些发现表明,P型有机半导体可以用作通过极性激发动态调整ENZ波长的新型平台,这为基于ENZ的非线性光学应用在柔性光电上开辟了新的可能性。
摘要 — 越来越多的证据表明,在汽车驾驶过程中,最佳大脑网络拓扑结构会随着疲劳的进展而改变。然而,功能连接对驾驶疲劳检测的判别能力程度仍不清楚。在本研究中,我们提取了两类特征(网络属性和关键连接)来探索它们在驾驶疲劳检测中的实用性。在模拟驾驶实验中,对 20 名健康受试者两次记录了脑电图数据。使用相位滞后指数建立多频带功能连接矩阵,作为以下图论分析和最警觉状态与疲劳状态之间关键连接的确定的输入。我们发现,在所有频带上,疲劳状态下的大脑网络都向效率较低的架构重组。进一步的询问表明,判别连接主要连接到额叶区域,即大多数增加的连接从额极到顶叶或枕叶区域。此外,我们使用β波段的判别连接特征获得了令人满意的分类准确率(96.76%)。我们的研究表明,图论特性和关键连接对于表现疲劳改变具有判别能力,并且关键连接是驾驶疲劳检测的有效特征。
摘要 近年来,射频能量收集已成为一个有趣的研究领域。本文介绍了多频带整流电路的实施布局。我们在这里实现了 1.9 GHz 的整流电路。整流电路的设计和仿真采用 -10 dBm、0 dBm、10 dBm 的输入功率。在谐振频率 1.83GHz、4.37 GHz 和 5.53 GHz 频率下,输入功率相对于直流电压的变化如图所示。当负载为 10kOhm、1Kohm、5Kohm,谐振频率为 1.83GHz、4.37GHz 和 5.53GHz 时,效率 (%) 相对于输入功率 (dBm) 的变化如图所示。当输入功率为 -10dBm 和 10dBm,频率为 1.83GHz、4.37GHz 和 5.53GHz 时,直流输出电压相对于负载的变化如图所示。本文展示了输入功率为-10dBm、0dBm、谐振频率为1.83GHz、4.37GHz和5.53GHz时效率随负载的变化。本文解释了输入功率为-10dBm和0dBm、负载为1kOhm、5Kohm和10Kohm时输出直流电压随频率的变化。本文还介绍了输入功率=-10 dBm和0dBm、负载=10Kohm时输入阻抗(Zin)实部和虚部随频率(GHz)的变化。本文还展示了输入功率为-10dBm、负载为10KOhm时回波损耗S(1,1)(dB)随频率的变化。关键词:整流器、回波损耗、射频能量收集
摘要:分形几何始终为多个电磁设计问题提供解决方案。本文使用分形几何(例如希尔伯特曲线和摩尔曲线)来设计高效的高阻抗表面。现代通信设备有许多传感器需要进行无线通信。无线通信的关键组件是天线。平面微带贴片天线因其低轮廓、紧凑和良好的辐射特性而广受欢迎。微带天线的结构缺点是它们的表面波会在接地平面上传播。高阻抗表面 (HIS) 平面是最小化和消除表面波的突出解决方案。HIS 结构表现为有源 LC 滤波器,可抑制其谐振频率下的表面波。结构的谐振频率通过其 LC 等效或通过分析反射相位特性获得。这项工作提出了类似于蘑菇 HIS 和分形 HIS 的传统 HIS 结构,例如希尔伯特曲线和摩尔曲线 HIS。通过应用平面波照射的周期性边界条件,可以获得 HIS 反射相位特性。结果是根据反射相位角得出的。传统的蘑菇结构在给定的 10 mm × 10 mm 和 20 mm × 20 mm 尺寸下表现出窄带特性。这些结构有助于更换 6 GHz 以下贴片天线的 PEC 接地平面。还设计了希尔伯特和摩尔分形,它们具有多频带响应,可用于 L、S 和 C 波段应用。HIS 的另一个设计挑战是突起,这增加了设计的难度。这项工作还展示了有通孔和无通孔对反射相位特性的影响。响应显示,在 x 波段操作下,通孔的影响最小甚至没有显著影响。