摘要:无线传感器网络和物联网受益于近年来功耗方面的进步,以实现智能控制实体。电池技术的类似进步使这些系统变得自主。然而,这种方法不足以满足现代应用的需求。为这些传感器供电的另一种解决方案是使用其环境中可用的能量,例如热能、机械振动、光能或无线电频率。然而,传感器通常放置在功率密度较低的环境中。本研究调查了与其他来源相比的无线电频率能量收集。在展示了在宽频带上收集能量的潜力后,进行了一项统计研究,以确定城市环境和农村地区的射频功率密度。多频带射频收集器系统旨在收集多个频带中的能量,以显示何时有多个射频源可用。当系统设计为在宽频带上运行时,可以增加收集的能量量。在本研究中,使用高级设计软件 (ADS) 制作了为无线传感器供电的多频带射频能量收集器。根据设计结果,所提出的能源收集方案在 GSM900 和 GSM1800 频段上效果更好。 关键词:能源收集器;无线网络;无线电源 1 引言 如今,监控我们所处环境的需求越来越重要,这使我们能够管理自己的行为;一个典型的例子就是天气预报。 现代传感器是小型、独立的设备,可对其周围环境进行简单的测量。 它们用于观察许多物理现象,如温度、压力、亮度等,这对于许多工业和科学应用至关重要。 传感器的作用是将物理量转换为可利用的电量,例如计算机可用的数字信号。 接口可以通过有线链路或无线方式进行,多年来一直如此。 同时,微电子和微机械领域的最新进展使得能够以合理的成本生产体积为几立方毫米的组件,同时功耗要求不断降低。微型传感器可以制成一个完整的嵌入式系统,部署多个微型传感器以自主方式收集环境数据并将其传输到一个或多个收集点,从而形成无线传感器网络 (WSN)。为这些传感器供电的传统方式是使用电池,但电池的能量有限,耗尽时需要更换。更换电池的维护成本可能很高,尤其是对于位于难以接近位置的传感器。在这种情况下,另一种自供电方式将是有利的,而能量收集则提供了这一潜力。1.1 能量收集 用于为传感器供电的能量收集系统由五个不同的模块组成,如图 1 所示。系统的第一级是能量传感器。它提供物理量作为输出,可用作能量转换级的输入。传感器的工作原理基于物理或化学效应。主要有六类:热、机械、光学、磁、电和化学 [1]。
主要关键词