可持续发展体系基于三大支柱:经济发展、环境管理和社会公平。在这些支柱之间寻找平衡的指导原则之一是限制不可再生能源的使用。解决这一挑战的一个有希望的方法是从周围环境中收集能量并将其转化为电能。当代对太阳能、风能和热能等新能源发电技术的发展需求很高,以促进用更清洁的可再生能源替代化石燃料能源。能量收集系统已成为一个突出的研究领域,并继续快速发展。现代技术,包括便携式电子设备、电动交通、通信系统和智能医疗设备,都需要高效的储能系统。电能存储设备还用于智能电网控制、电网稳定性和峰值功率节省,以及频率和电压调节。由于电力供应波动,可再生能源(例如太阳能和风能)产生的电力并不总是能够立即响应需求。因此,有人建议将收获的电能保存起来以供未来使用。而电能存储技术的现状远不能满足必要的需求。本期特刊发表了 13 篇论文,涵盖优化算法的各个方面、风能涡轮机的评估、静电振动能量传感器、电池管理系统、热电发电机、配电网络、可再生能源微电网接口问题、基于模糊逻辑控制器的直接功率控制、燃料电池参数估计以及超低功率超级电容器。Sharma 等人 [1] 提出了一种鲸鱼优化算法 (WOA) 和粒子群优化 (PSO) 算法 (WOAPSO) 的混合版本,用于光伏电池的参数优化。在 WOA 的流水线模式下利用具有自适应权重函数的 PSO 的开发能力来增强基本 PSO 的能力和收敛速度。将所提出的混合算法与六种不同的优化算法在均方根误差和收敛速度方面的性能进行了比较。仿真结果表明,所提出的混合算法不仅能在不同辐照水平下产生优化参数,而且即使在低辐照水平下也能估算出最小均方根误差。采用海鞘群算法 (TSA) 估算标准温度条件下的 Photowatt-PWP201 PV 板模块参数 [ 2 ]。结论是,TSA 是一种有效且稳健的技术,可用于估算标准工作条件下太阳能 PV 模块模型的未知优化参数。将模拟结果与四种不同的现有优化算法进行了比较:引力搜索算法 (GSA)、粒子群优化和引力搜索算法的混合算法 (PSOGSA)、正弦余弦算法 (SCA) 和鲸鱼
主要关键词