摘要:脑电信号被广泛应用于情绪识别,但目前基于脑电信号的情绪识别准确率较低,实时性受到限制。针对这些问题,本文提出了一种改进的特征选择算法来基于脑电信号识别受试者的情绪状态,并结合该特征选择方法设计了一种在线情绪识别脑机接口系统。具体而言,首先提取时域、频域、时频域不同维度的特征;然后采用改进的多阶段线性递减惯性权重(MLDW)粒子群优化(PSO)方法进行特征选择。MLDW算法可以很容易地优化惯性权重的递减过程;最后采用支持向量机分类器对情绪类型进行分类。我们从32名受试者采集的DEAP数据集中的脑电数据中提取了不同的特征,进行了两次离线实验,结果表明四类情绪识别的平均准确率达到了76.67%。与最新基准相比,我们提出的MLDW-PSO特征选择提高了基于脑电的情绪识别的准确率。为了进一步验证MLDW-PSO特征选择方法的有效性,我们开发了一个基于中文视频的在线二类情绪识别系统,对10名健康受试者取得了良好的效果,平均准确率达到了89.5%。证明了我们方法的有效性。
主要关键词