这里介绍的两个项目都计划使用毫米波长雷达来探测毫米大小的空间碎片物体。将雷达放置在靠近物体的位置有两个好处。首先,由于返回功率与距离(R)之间存在R − 4 的关系,因此靠近物体可以获得更高的返回功率。这种关系意味着,尽管卫星雷达比地面雷达弱得多,但如果雷达足够靠近目标,则返回功率会更高。其次,由于雷达散射截面,从物体返回的雷达功率与λ − 2 成正比。因此,较短的波长(较高的频率)有利于探测这些小块的空间碎片。由于毫米波长会被地球大气层衰减,因此要探测它们,必须将它们放置在卫星上。
Skycrane 着陆系统的一个关键组件是允许火星车下降 7.0 米以完全伸展其绳索的装置,因为绳索在进入行星大气层时无法伸展。该装置 - 下降制动机构 - 允许快速以受控速度进行部署,并在部署结束时降低速度,以便在整个绳索长度下进行受控着陆。该设计由主发电机、电阻板和图 4 所示的附加部件组成,使该机构能够以不会对绳索产生摩擦的方式工作,因为它以恒定的速率展开到其最大长度。缺乏摩擦和对部署的高度控制可以释放最少的能量,
CALIPSO 任务是一项多传感器卫星实验,它使用创新方法探索我们的大气层并研究气溶胶和薄云。CALIPSO 将从太空提供首次全球云和气溶胶剖面和物理特性调查,包括季节和地理变化。CALIPSO 将收集其他地球观测卫星无法提供的有关云和气溶胶垂直结构的信息。这些观测结果与其他任务的同步数据相结合,将大大增强我们对云和气溶胶如何相互作用、全球产生的气溶胶数量、它们如何运输以及气溶胶在大气中停留多长时间的理解。CALIPSO 测量最终将有助于改善对天气、气候和空气质量的预测。CALIPSO 的主要任务计划持续三年。
背景:人们普遍认识到,轨道碎片的挑战日益严峻,对我们国家的太空雄心构成了重大风险。截至去年年底,目前有 4,800 多颗卫星在轨道上运行,而未来卫星数量的增长预测表明,未来还会有更多卫星在轨道上运行。随着太空物体数量的增加,发生碰撞的概率也在增加。目前,建议低地球轨道卫星的运营商确保其航天器在完成任务后 25 年内重新进入地球大气层。作为我们持续努力减轻轨道碎片产生的一部分,第二份报告和命令将把卫星任务后处置所需的时间缩短至五年。
地球大气层受到来自几个来源的宇宙尘埃的轰击:短周期彗星 (SPC)、小行星带粒子 (AST)、哈雷彗星 (HTC) 和奥尔特云彗星 (OCC)。一些尘埃物质在大气中蒸发,这一过程称为烧蚀,粒子移动得越快,烧蚀率就越高。天体物理学家 Juan Diego Carrillo-Sánchez 领导的团队计算了尘埃中元素(如铁和钾)的平均烧蚀率,并表明移动较慢的 SPC 或 AST 尘埃中的物质的烧蚀率低于移动较快的 HTC 或 OCC 尘埃中的相同物质。例如,AST 尘埃中铁的平均烧蚀率为 28%,而空白的平均烧蚀率为
澳大利亚卫星交叉校准辐射计 (SCR) 系列高光谱传感器旨在直接改善商业地球观测领域越来越多使用的小型光学卫星的校准,以提供更多可互操作的数据。这些数据质量改进是通过交叉校准实现的——量化不同地球观测卫星在大气层顶部接收到的数据信号差异。实际上,这意味着来自一颗卫星的数据可以与来自其他卫星的数据相结合,以提高它们的整体效用。此外,预计光学卫星地球观测分析就绪数据 (ARD) 的辐射测量精度将从 3% 提高到 1%,这意味着能够识别特定作物,而不仅仅是识别一般的农业活动。
摘要:虽然在太空中传输电力正在成为改进的重要角色,但无线系统也变得越来越必要。从理论上讲,特斯拉线圈是最便宜、最简单的方法之一。基本上,有三个主题至关重要。特斯拉线圈的运输就是其中之一。此外,特斯拉线圈的运输系统与卫星几乎相同。因此,我们的目标是以低成本制造它。其次,由于火星的大气层和特斯拉线圈的功率,在轨道和火星表面之间发电是另一个问题。我们的目标是在低压下探测特斯拉线圈的功率。正如本文将提到的,从理论上讲,我们的论文是成功的,证明了我们的理论是可行的。第三,远距离发电是我们定理的基础。我们正在改变公式中的结构变量,使其更有利于实现主要目的。
2。空间:在世界面前呈现地球之外的第二次世界大战之外,需要更轻,更省油的飞机。此外,各国将注意力转向天空及以后。1960年代的太空计划汇集了杰出的思想,将人类带入大气以外的太空。现在,需要携带人员和燃料的车辆抵抗地球的大量重力。需要可能破坏地球大气层,携带大量燃料的材料,同时使车辆内部从极端温度下降。NASA科学家为航天器选择了塑料,特别是凯夫拉尔和尼龙。层,以保护机组人员免受太空的极端温度。目前,正在进行研究,以制造可重复使用的航天器,该航天器可以重复发射,轨道,脱口机和大气再入。