摘要 Proaerolysin 是由嗜水气单胞菌产生的一种细菌毒素,它特异性地与质膜上的 GPI 锚定蛋白结合,形成跨膜孔,导致细胞在几个小时内死亡。利用这种独特的特性,proaerolysin 被广泛用于阵发性睡眠性血红蛋白尿症 (PNH) 的诊断测试,这是一种由 PIGA 基因体细胞突变引起的疾病,该基因参与 GPI 锚的生物合成。此外,proaerolysin 还可作为基因操作中的反选择剂。尽管之前已经报道过 proaerolysin 的细菌表达和纯化,但由于缺乏对蛋白质稳定性至关重要的内部二硫键,产量较低。在这里,我们证明使用 Shuffle E. coli 菌株(它促进细胞质中二硫键的形成)可显著提高 proaerolysin 的溶解度和正确折叠。我们实现了高产量的 proaerolysin,从 50 ml 细菌培养物中可获得约 3 mg,纯度超过 99%。通过在小鼠胚胎干细胞 (mESC) 中进行测试,证实了重组 proaerolysin 的功能性,表明这种高产量生产方法为广泛的生物技术应用提供了可靠且经济高效的功能性 proaerolysin 来源。
摘要背景和目标:基于大肠杆菌 (E. coli) 的新型癌症疗法最近引起了广泛关注。本研究研究了具有转基因大肠杆菌治疗癌症的潜力。方法:进行本系统综述以收集有关基于大肠杆菌的癌症疗法的相关文献。本研究搜索了多个数据库以查找临床前研究和早期临床试验。这些研究包括用于癌症治疗的转基因大肠杆菌的体外和体内评估。此外,本研究评估了基于大肠杆菌的疗法与其他疗法结合并使用个性化方法治疗癌症的潜力。结果:在仔细审查了 13,064 篇出版物后,经过筛选过程,纳入了 301 项研究进行定量分析,其中包括 44 篇文章。该综述表明,活的肿瘤靶向细菌有可能彻底改变癌症治疗。尽管传统癌症治疗面临挑战,但大肠杆菌提供了一种可以在肿瘤内积聚和增加的替代策略。大肠杆菌可通过基因操作和合成生物工程携带多种抗癌剂,使其成为定制治疗方法的理想载体。研究人员发现它们可用作单一疗法或联合疗法,为增强临床效果提供多方面的解决方案。多项针对肿瘤的大肠杆菌临床试验正在进行中,表明理论前景已转化为实际应用。结论:总而言之,活的靶向肿瘤细菌可能能够解决现有癌症治疗的局限性。其抗肿瘤免疫反应的选择性、可编程性和诱导抗肿瘤免疫反应的能力表明了显著的进步。尽管存在这些挑战,但正在进行的临床试验表明,大肠杆菌融入癌症治疗方案的方式发生了切实的转变。需要进行更多的研究和开发,以充分利用这些新的靶向抗癌策略。关键词:大肠杆菌、癌症治疗、系统评价、体外、体内资金:无。*本作品已根据 CC BY-NC-SA 许可发表。版权所有 © 作者 引用本文为:Ameli N、Shahriari A、Yousefi M、Alaghi A、Gorgestani O、Hatami B。大肠杆菌在癌症治疗中的创新策略:系统评价。伊朗红新月会医学杂志,2024,20.1-13。一、简介
基因工程一直在彻底改变分子生物学的研究已有30多年的历史。大肠杆菌一直是用于恢复该体外基因工程产物的标准宿主。自1990年代后期以来,已经出现了新的体内技术,可以极大地简化,加速和扩展大肠杆菌,沙门氏菌和其他生物的基因工程。现在,在一周内,研究人员几乎可以以任何方式修改任何选择的核苷酸。此外,这些基因工程技术不依赖于限制酶和DNA连接酶进行的体外反应。相反,他们利用噬菌体L同源重组蛋白共同称为“红色”,以直接修饰细菌细胞中的DNA。重要的是,红蛋白只需要50个碱基
我同意遵守 NIH 重组 DNA 分子指导方针的规定,并且不会将所使用的重组 DNA 分子转让给其他研究人员或机构,除非确保他们的设施和技术足够,并且他们执行新的 MUA 并在实验开始前提交给 NIH。
增加饱和脂肪酸与磷脂的相对结合。因此,利用脂肪酸进行磷脂生物合成的步骤之一是温度控制的。在体内观察到的 3H-油酸和“C-棕榈酸混合物的温度效应可以通过使用这些脂肪酸的辅酶 A 衍生物的混合物将 a-甘油磷酸酰化为溶血磷脂和磷脂酸来在体外证实。在大肠杆菌提取物中,棕榈酰和油酰辅酶 A 的相对转酰速率随孵育温度而变化,其方式模拟体内观察到的温度控制。体外合成的磷脂酸在 d 位显示出油酸的显著富集,类似于体内合成的磷脂中观察到的位置特异性。
大肠杆菌是生产生物燃料和大宗化学品(如乙醇、高级醇、脂肪酸、氨基酸、莽草酸衍生物、萜类化合物、聚酮化合物和聚合物前体(如 1,4-丁二醇))的最广泛使用的细胞工厂之一(Yang 等人,2021 年)。生产这些生化物质的代谢工程需要对细胞代谢进行大量调节以提高生产率。基因组编辑需要高效的工具来执行节省时间的顺序或多重操作。大肠杆菌有许多基因编辑工具,但它们都有特定的优点和缺点。使用双链 DNA(dsDNA)进行基因工程重组通常需要选择标记,这些标记应在下一步中被消除,以便进行后续修改(Datsenko 和 Wanner,2000 年;Sharan 等人,2009 年)。与双链DNA相比,单链DNA(ssDNA)介导的重组效率更高,并已进一步发展为可进行多重编辑的基因编辑工具,如多重自动基因组工程(MAGE)(Wang et al.,2009)和可追踪多重重组(TRMR)(Warner et al.,2010)。但这些方法不适用于没有选择标记的20bp以上的多个靶基因插入,通常需要强大的高通量筛选方法(Li et al.,2015)。近来发展的成簇的规律间隔的短回文重复序列(CRISPR)/CRISPR相关蛋白(Cas)系统被广泛应用于大肠杆菌的基因工程,极大地促进了其应用。成熟的 CRISPR RNA (crRNA) 和反式激活 crRNA (tracrRNA) 双链(或单个合成向导 RNA,sgRNA)或仅 crRNA 引导 Cas 核酸酶切割具有所需原型间隔区相邻基序 (PAM) 的靶 DNA 序列 (Jiang et al., 2013)。我们之前的文章 (Liu et al., 2020) 总结了不同类型的 CRISPR 系统的机制。CRISPR/Cas 系统持续切割靶位点,直到成功编辑或未编辑的细胞死亡,从而无需使用选择标记。
Vaxchora 疫苗有蓝白包装(疫苗粉)和黑白包装(拭子粉)。接种疫苗的方法: • 将 100 毫升室温瓶装水倒入干净的杯子中。请勿使用自来水或其他饮料或液体; • 按照正确的顺序准备溶液,否则疫苗无法使用; • 将黑白包装(缓冲液成分)的内容物溶解在杯子中。对于 2 至 5 岁的儿童,仅使用一半的缓冲液; • 加入蓝白小袋(疫苗)的内容物;搅拌至少 30 秒。如果需要,最多添加 4 克(1 茶匙)
摘要背景和目标:基于大肠杆菌(大肠杆菌)的新癌症疗法最近引起了人们的重大兴趣。大肠杆菌,以治疗癌症的潜力。方法:进行了当前的系统综述,以收集有关基于大肠杆菌的癌症疗法的相关文献。当前的研究搜索了几个数据库进行临床前研究和早期临床试验。这些研究包括对用于癌症治疗的基因工程大肠杆菌的体内和体内评估。此外,当前的研究还评估了基于大肠杆菌的疗法与其他疗法结合治疗癌症的潜力,并使用了个性化方法。结果:经过精心审查13,064篇出版物后,包括301项研究以进行定量分析,包括44篇文章。活肿瘤的细菌有可能彻底改变癌症治疗剂。尽管与常规癌症治疗相关的挑战,但大肠杆菌提供了一种可以在肿瘤内积累和增加的替代策略。大肠杆菌可以通过基因操纵和合成生物工程来携带多种抗癌药,使其成为量身定制的治疗方法的理想载体。研究人员发现,它们可以用作单一疗法或联合疗法,并提供了多方面的解决方案,以增强临床结果。结论:得出结论,靶向肿瘤的细菌可能能够解决现有癌症治疗的局限性。1。正在进行多项大肠杆菌靶向肿瘤的临床试验,表明理论上的承诺已转化为实际应用。其抗肿瘤免疫反应,可编程性和诱导抗肿瘤免疫反应的能力的选择性表明了显着进步。尽管存在这些挑战,但持续的临床试验表明,将大肠杆菌纳入癌症治疗方案的方式存在明显的转变。需要更多的研究和开发来利用这些新的目标抗癌策略,以充分发挥其潜力。关键字:大肠杆菌,癌症疗法,系统评价,体内,体内资金:无。*这项工作已根据CC BY-NC-SA许可发布。版权所有©作者引用本文为:Ameli N,Shahriari A,Yousefi M,Alaghi A,Gorgestani O,Hatami B.大肠杆菌在癌症中的创新策略:系统评价。伊朗红月MED J.2024,20.1-13。 简介伊朗红月MED J.2024,20.1-13。简介