摘要 脊髓损伤破坏了感觉运动通路,阻塞了周围神经与大脑之间的信息流,导致自主神经功能丧失。大量研究探讨了信息流受阻对大脑结构和功能的影响,证明了脊髓损伤后大脑具有广泛的可塑性。通过恢复大脑皮层对肢体的“重新支配”,脊髓损伤的治疗策略也取得了很大进展。尽管尚未进行深入研究,但“重新支配”所导致的大脑结构和功能的变化已有所报道。本文就脊髓损伤后大脑皮层局部结构、功能改变和回路重组的研究进展作一综述,探讨大脑神经元结构与电活动特性的改变、大脑功能重组的特点以及信息流重组对大脑功能的调控。脑功能整合是人体进行复杂精细运动的基础,受到信息流复杂而广泛的调控,因此,脊髓损伤及治疗后脑功能整合的变化值得关注。
我们描述了一名70岁妇女的情况,该妇女发展出跨层皮质,V1和相关视觉关联皮层的脑梗塞。她出现了对物体的重复图像,较低的保真度和原始(Polyopia)的透明副本的视觉感知障碍,与全息图非常相似。我们抓住了这个机会来解释这些虚假图像的产生。这使我们得出了不少于壮观的自动脑理论,该理论解释了大脑的高度熵,大脑皮层中数据的存储,大脑组织的等电位性以及大脑计算算法和感知感觉的能力。人脑的这种显着能力需要在大脑皮层的高度相互连接和密集的树突树中的数学傅立叶变换和电势势的部署。这里探索的想法是崇高的。这些阴谋被认为是在自然界深深地根深蒂固的。不少于黑洞和宇宙本身。我们的案例以图形和生动的方式为大脑功能的全息模型提供了证据。
大脑皮层是一个复杂的神经生物学系统,具有许多相互作用的区域。这些区域如何协同工作以促进灵活的行为和认知,越来越成为严谨研究的对象。在这里,我回顾了最近关于多区域皮层运作方式的实验和理论工作。这些研究揭示了大脑皮层区域间连接的几个一般原则、皮层区域间生物特性的低维宏观梯度以及信息处理的时间尺度层次。理论工作表明,皮层层次结构中前馈和反馈通路上的差异兴奋和抑制具有可测试的预测。此外,分布式工作记忆和简单决策的建模产生了一种新的数学概念,称为空间分叉,它可能解释了不同的皮层区域如何能够在模块化组织的大脑中促进各自的功能(例如,感觉编码与执行控制)。
读取的目的是识别和定位大脑皮层中 flortaucipir 活动大于背景活动的区域(背景活动定义为高达测量的小脑平均值的 1.65 倍)。为获得最佳显示效果,请选择在两种不同颜色之间快速转换的色标,并调整比例以使转换发生在 1.65 倍阈值处。检查双侧后外侧颞叶 (PLT)、枕叶、顶叶和额叶区域。任一半球的大脑皮层活动有助于图像解释。白质或大脑外区域的活动无助于图像解释。为了帮助识别 PLT,请考虑按照以下说明将颞叶细分为四个象限。前颞叶和内侧颞叶的活动无助于阳性 TAUVID 模式的图像解释。
中风,也称为脑血管事故,是一种急性脑血管疾病,发病率很高,残疾率和死亡率。它可能会破坏大脑皮层和外部肌肉之间的相互作用。皮质肌肉相干性(CMC)是研究大脑皮层如何控制肌肉活性的常见且有用的方法。CMC可以暴露皮质和肌肉之间的功能连接,以反映运动系统中的信息流。与CMC相关的传递反馈可以揭示这些功能连接。本文旨在调查影响中风患者CMC的因素,并对该领域的当前研究进行全面的摘要和分析。本文首先讨论中风的影响以及CMC对中风患者的意义。然后,它继续详细说明CMC及其定义公式的机理。接下来,分别讨论了中风患者中各种因素对CMC的影响。最后,本文解决了CMC的当前挑战和未来前景。
背景:使用文本报告向父母和对赔偿权提出异议的法律专业人士传达患有长期缺氧缺血性损伤 (HII) 的儿童的双侧、对称性和区域性皮质脑萎缩可能很困难。使用标准的横截面图像向外行人解释双侧、区域性脑成像也具有挑战性。大脑表面的单一平面图像,就像从地球仪中得出地球地图一样,可以通过磁共振成像 (MRI) 扫描的曲面重建生成,即墨卡托地图。外行人在未经事先培训的情况下识别异常“墨卡托脑图”的能力需要在非医疗环境中使用前进行评估。目的:确定外行人在未经事先培训的情况下检测异常儿童墨卡托平面脑图的灵敏度和特异性。方法和材料:向 111 名参与者分别提供 10 张墨卡托脑图。这些地图包括 5 个 HII、1 个皮质发育不良和 4 个正常病例。参与者需要识别异常扫描。计算了总体和参与者亚组的敏感性和特异性。结果:总体敏感性和特异性分别为 67% 和 80%。普通放射科医生(n = 12)的敏感性和特异性分别为 91.2% 和 94.6%。外行人(n = 54)的敏感性为 67%,特异性为 80%。结论:放射科医生的高特异性和敏感性验证了该技术在区分皮质病理异常扫描方面的有效性。外行人使用墨卡托地图识别异常大脑的高特异性表明,这是一种向外行人展示儿童 HII 皮质 MRI 异常的可行沟通工具。
根据细胞大小和类型以及各个皮质层中神经元排列的差异,例如细胞密度、某些层的存在或缺失以及层的相对厚度的差异,大脑皮质可分为几个不同的细胞结构区域。第一张完整的细胞结构图是 Campbell (1905) 的图,他将人类大脑皮质划分为几个一般区域,以及 Brodmann (1905) 发表的猴 (Cercopithecus) 大脑皮质图。不久之后,Brodmann (1908、1909、1914) 发表了他著名的人类大脑皮质图。在 Brodmann 的图中,几个皮质区域被识别并用不同的数字标记(图 1 A 和 2 A)。 1925 年, Economo 和 Koskinas 发表了人类大脑皮层的主要图谱,其中不同的结构区域用字母标记(图 1B),并提供了不同区域的详细描述和出色的显微照片。20 世纪 50 年代,出现了 Bailey 和 Bonin(1951 年)以及 Sarkissov 等人(1955 年)的地图,后一张地图是基于对多个大脑的检查而对 Brodmann 图进行的修改。各种地图都侧重于人类额叶的细胞结构,例如 Sanides(1962 年)的地图、Beck(1949 年)的眶额区地图、Rajkowska 和 Goldman-Rakic(1995 年)的背外侧额区 9 和 46 、Amunts 等人的布罗卡区。 (1999),区域 10 和 13 由 Semendeferi 等人(1998、2001)描述。除了上述细胞结构研究外,一些研究者还根据髓鞘(Vogt,1910;Vogt 和 Vogt,1919)或色素结构(Braak,1979)描述了大脑皮层的结构。在 20 世纪 80 年代现代功能性神经成像出现之前,对人类大脑皮层的结构研究兴趣相对有限。最初用正电子发射断层扫描(PET),稍后用功能性磁共振成像(fMRI)证明可以检测到与运动和认知表现各个方面相关的皮层活动的局部变化,这需要立体定位图来描述这些变化的位置并识别其中的细胞结构区域
37。大脑皮层的裂片,地形细分,内侧,侧向皮质田的结构和功能38。地形和基底神经节和diencephalon(Thalamus,下丘脑)的成分,第三个心室。39。的地形和脑干的成分(中脑,PON,髓质长圆形),第四脑室。40。大脑的动脉,静脉和淋巴循环