用户必须在使用前确保产品在其应用中的适用性。产品仅符合该和其他相关HIMEDIA™出版物中包含的信息。本出版物中包含的信息基于我们的研发工作,据我们所知,真实而准确。Himedia™实验室Pvt Ltd保留随时更改规格和信息的权利。产品不适用于人类或动物或治疗用途,而是用于实验室,诊断,研究或进一步制造的使用,除非另有说明。本文包含的陈述不应被视为任何形式的保证,明示或暗示,也不应对侵犯任何专利的责任承担任何责任。
oybean囊性线虫(SCN)是大豆的最高产量害虫,在受感染的田间,每英亩最多可将产量降低5蒲式耳。估计在过去的25年中,SCN的收益率损失了超过270亿美元的大豆种植者,并且每年继续将美国的种植者抢走超过10亿美元。1由于改善的大豆遗传学和管理而增加的产量增加可能掩盖了随着时间的推移,SCN的收益率损失的真实程度。
© 作者 2024。开放存取。本文根据知识共享署名 4.0 国际许可协议获得许可,允许以任何媒介或格式使用、共享、改编、分发和复制,只要您给予原作者和来源适当的信任,提供知识共享许可的链接,并指明是否进行了更改。本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的致谢中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不被法定法规允许或超出允许用途,则您需要直接从版权所有者处获得许可。要查看此许可证的副本,请访问 http://creativecommons.org/licenses/by/4.0/。
监视,报告和验证(MRV)系统涵盖了所有用于收集,验证和报告供应链策略和特定指标的过程,以评估和记录采取或实现行动,进步,绩效和合规性的程度。监视和可追溯性是MRV系统的两个关键要素,可帮助公司检索,结构和报告有关其原材料量的数据以及与采购相关的生态系统转化风险。适合任何给定公司或供应链的合适工具取决于原材料/商品,采购起源,供应链中的位置以及公司能力等因素。但是,公司努力确定哪种工具适合它们,因为它们缺乏有效工具所需的工具以及哪些数据可以在供应链中的哪些点上发挥决定性作用。
种子大小和形状是确定大豆产量和质量的重要特征。种子大小和形状对于豆腐,纳托,味o和毛豆等特殊大豆食品也是可取的。为了发现稳定的定量性状基因座(QTL)和候选基因种子形状和100种子重量,目前的研究使用了蔬菜类型和种子大豆衍生的F 2和F 2:3映射种群。总共映射了42个QTL,分散在13个染色体上。确定七个是稳定的QTL,其中五个是主要的QTL,即QSL-10-1,QSL-4-1,QSW-4-1,QSV-4-1,QSV-4-1,QSLW-10-10-1和QSLH-10-1。在当前研究中检测到的42个QTL中的13个是在已知基因座发现的,而其余的29则是第一次发现。在这29个新颖的QTL中,有17个是主要的QTL。基于通过进化关系(Panther),基因注释信息和文献搜索的蛋白质分析,预计七个稳定的QTL中的66个基因被预计可能是可能调节大豆中种子形状和种子体重的候选基因。当前的研究确定了控制大豆种子形状和体重的关键候选基因和定量性状基因座(QTLS),这些结果将非常有助于标记辅助育种,以开发具有改善种子体重和所需种子形状的大豆品种。
炎症的概念包括有益和有害的方面,分别被称为感染性和无菌炎症。传染性炎症在宿主防御中起着至关重要的作用,而无菌炎症则包括过敏性,自身免疫性和与生活方式相关的疾病,从而导致有害影响。树突状细胞和巨噬细胞,这两种都是代表性的单核吞噬细胞(MNP),对于启动免疫反应至关重要,表明MNPS的调节限制了过度的炎症。在这种情况下,已经确定了具有免疫调节特性的饮食成分。中,大豆衍生的化合物,包括异黄酮,皂苷,类黄酮和生物活性肽,直接作用于MNP,以微调免疫反应。值得注意的是,一些大豆衍生的化合物已经证明了减轻小鼠模型过敏和自身免疫性症状的能力。在这篇综述中,我们介绍并总结了大豆衍生化合物在MNP介导的炎症反应中的作用。了解大豆衍生的分子调节MNP的机制可以为设计安全的免疫调节剂提供宝贵的见解。
早上好,Boozman 主席、Klobuchar 排名成员、Hoeven 参议员以及参议院农业委员会的各位尊敬成员。今天,我很荣幸能代表美国大豆协会就生产者对农业经济的看法作证。我叫 Josh Gackle。我是来自北达科他州库尔姆的大豆农民,我经营的农场已经是第三代了,我和我的父亲和兄弟一起在这里工作。我们的家庭农场是我唯一的生意和经济来源。今年,我有幸担任美国大豆协会 (ASA) 主席。我们的协会成立于 1920 年,代表美国大豆农民就大豆产业重要的国内和国际政策问题发表意见。ASA 拥有 26 个附属州大豆协会,代表 30 个主要大豆生产州的近 500,000 名农民。
大豆疫霉菌是研究植物病原菌卵菌的模式物种,早期利用大豆疫霉菌进行基因功能研究主要基于基因沉默技术,近年来,CRISPR/Cas9介导的基因组编辑技术在大豆疫霉菌中成功建立并广泛应用于卵菌中。本文介绍了基于CRISPR/Cas9的基因组编辑技术利用PEG介导的大豆疫霉菌原生质体稳定转化的操作步骤。将表达Cas9和单链指导RNA的pYF515以及候选基因的同源置换载体共转化大豆疫霉菌。最后将候选基因的ORF替换为整个潮霉素B磷酸转移酶基因(HPH)的ORF,实现精准敲除。
大豆是许多国家的主要作物,因其营养特性而被广泛用于从人类食品到动物产业。从经济角度来看,谷物链将大量资金转移到生产国的经济中。然而,与世界各地的其他农产品一样,大豆的最终产量可能会受到干旱等非生物环境压力的严重影响。由于豆荚和谷粒中的花朵可以最大限度地减少缺水造成的损害,研究人员一直致力于了解与开花过程相关的基因及其相互作用。本文介绍了一篇专门介绍大豆开花过程及其基因网络的综述,描述了基因相互作用以及基因如何在这一复杂机制中发挥作用,该机制也受日光和昼夜节律等环境触发因素的支配。目的是收集有关大豆开花过程的信息和见解,旨在提供有用的知识,以帮助开发耐旱大豆品系,最大限度地减少因开花延迟或提前而造成的损失,从而抑制财务和生产力损失。
在美国,农业碳市场的景观开始转移,尽管仍然是“野生西部”。公司仍在提供碳计划,以划定农作物生产商,以通过采用碳隔离实践(例如,无耕作和覆盖农作物)来获得碳信用量。然后将这些碳信用额出售给必须遵守州温室气体(GHG)排放法规或自愿性温室气体排放降低承诺的公司。图1幻觉表明,从农业项目发行的碳信用额仍然是部门发行的整体信用额的一小部分。此外,过去十年来农业的大多数碳信用额来自乳制品行业,而不是划船碳固存的实践。