社会对太空资产的依赖已经增长到如今每个现代国家基础设施的一部分的程度。借助太空技术提供的服务(例如全球导航卫星系统)对于从电信到交通再到银行等各个领域的顺利运营至关重要(Hesse and Hornung,2015),而且这个清单还可以继续。甚至普通民众也已经习惯使用卫星服务,例如卫星电视或手机上的卫星导航。因此,对我们的太空资产的任何威胁对社会来说都是非常重要的问题。截至 2020 年 2 月,太空中大约有 5,500 颗卫星,但实际上只有大约 2,300 颗在运行,这意味着大约有 3,200 颗报废卫星仍在地球轨道上运行,还有火箭的上面级和整流罩以及因解体、爆炸、碰撞、退化或其他异常事件而产生的各种较小物体,这些事件导致碎片的产生。这些物体统称为空间垃圾,其尺寸分布范围从大型完整物体(例如,尺寸大于 10 米且重量为几吨的火箭或大型卫星的部件)到毫米大小的碎片,如油漆鳞片或冷却剂凝固液滴。2020 年初的估计显示,有 34,000 个物体大于 10 厘米,900,000 个物体介于 > 1 至 10 厘米之间,以及惊人的 1.28 亿个物体介于 > 1 毫米至 1 厘米之间。鉴于其高速度和随之而来的高动能,即使是小碎片也会对正在运行的卫星构成重大威胁,因为它们可能会撞击卫星,造成灾难性的后果并导致潜在的关键服务丧失。同时,较大物体之间的高能碰撞会产生真正的爆炸,从而产生数千个碎片。这些碎片反过来会与其他轨道物体相撞,引发连锁反应和滚雪球效应,可能导致整个轨道无法使用。这种极端情况(凯斯勒综合征)最初由凯斯勒在 70 年代研究(凯斯勒和库尔帕莱,1978 年),距离现实并不遥远,因为已经发生了几次碰撞。也许最著名的是俄罗斯军用通信卫星 Cosmos 2,251 与铱星星座卫星之间的碰撞(王,2010 年),这导致碎片数量大幅增加。随着目前正在开发的卫星应用越来越多,需要越来越多的卫星(例如,部署数百颗卫星组成的星座以提供全球连接或万维网),空间垃圾问题变得越来越重要(Virgili 等人,2016 年)。
András Pál 1, Masanori Ohno 2, László Mészáros 1, Norbert Werner 3, Jakub ˇ Rípa 3, Balázs Csák 1, Marianna Dafˇcíková 3, Marcel Frajt 4, Yasushi Fukazawa 2, Peter Hanák 5, Ján Hudec 4, Nikola Husáriková 3, Martin Kolács 3, Martin Koleda 7, Robert Laszlo 7, Pavol Lipovský 5, Tsunefumi Mizuno 2, Filip Münz 3, Kazuhiro Nakazawa 8, Maksim Rezenov 4, Miroslav Šmelko 9, Hirromitsu Takahashi 2, Martin Topinka Jean-Paul Breuer 3,TamásBozóki11,Gergely Dale 12,Teruaki Enoto 13,Zsolt Frei 14,Gergely Fresh 14,GáborGalgóczi14.15 14.15,Filip Hroch 3,Yuto Ichinohe 16,Yuto Ichinohe 16,Kornélkapás17,18,15,15,15,15,15,15,15,15,15,15 你好。 Poon 2,AlešPovalaEvenc 6,Johnakátsy14.15,Kento Torigoe 2,Nagomi Uchida 20和Yuusuke Uchida 21András Pál 1, Masanori Ohno 2, László Mészáros 1, Norbert Werner 3, Jakub ˇ Rípa 3, Balázs Csák 1, Marianna Dafˇcíková 3, Marcel Frajt 4, Yasushi Fukazawa 2, Peter Hanák 5, Ján Hudec 4, Nikola Husáriková 3, Martin Kolács 3, Martin Koleda 7, Robert Laszlo 7, Pavol Lipovský 5, Tsunefumi Mizuno 2, Filip Münz 3, Kazuhiro Nakazawa 8, Maksim Rezenov 4, Miroslav Šmelko 9, Hirromitsu Takahashi 2, Martin Topinka Jean-Paul Breuer 3,TamásBozóki11,Gergely Dale 12,Teruaki Enoto 13,Zsolt Frei 14,Gergely Fresh 14,GáborGalgóczi14.15 14.15,Filip Hroch 3,Yuto Ichinohe 16,Yuto Ichinohe 16,Kornélkapás17,18,15,15,15,15,15,15,15,15,15,15 你好。 Poon 2,AlešPovalaEvenc 6,Johnakátsy14.15,Kento Torigoe 2,Nagomi Uchida 20和Yuusuke Uchida 21
2.2。大约有57万例宫颈癌病例和311,000例死亡,与世界各地的HPV病毒有关(Bruni l等。ICO/IARC HPV和癌症信息中心(HPV信息中心)。 人类乳头瘤病毒和世界上相关疾病。 摘要报告22 2021年八月)。 根据国家癌症研究所(INCA)的说法,是宫颈癌是女性人口中第三大肿瘤,也是癌症妇女死亡的第四个原因,造成约17,000例新病例,每年近7,000例死亡。 在2023年发表了一项多中心研究,巴西是该国的一部分,该研究估计在该国有10,700次与癌症相关的癌症相关的死亡(癌症死亡的国际负担和从癌症中损失的数年负担,可归因于四个主要危险因素:巴西,俄罗斯,俄罗斯,俄罗斯,南方,俄罗斯,非洲,国王,俄罗斯,俄罗斯州,俄罗斯,俄罗斯,国王,国王,俄罗斯州,俄罗斯,国王。ICO/IARC HPV和癌症信息中心(HPV信息中心)。人类乳头瘤病毒和世界上相关疾病。摘要报告22 2021年八月)。是宫颈癌是女性人口中第三大肿瘤,也是癌症妇女死亡的第四个原因,造成约17,000例新病例,每年近7,000例死亡。在2023年发表了一项多中心研究,巴西是该国的一部分,该研究估计在该国有10,700次与癌症相关的癌症相关的死亡(癌症死亡的国际负担和从癌症中损失的数年负担,可归因于四个主要危险因素:巴西,俄罗斯,俄罗斯,俄罗斯,南方,俄罗斯,非洲,国王,俄罗斯,俄罗斯州,俄罗斯,俄罗斯,国王,国王,俄罗斯州,俄罗斯,国王。
2微波动力电感检测器18 2.1导体和复杂导电率。。。。。。。。。。。。。。。。19 2.2超导性。。。。。。。。。。。。。。。。。。。。。。。。。。。。20 2.2.1基本现象学:库珀对和准粒子。。。21 2.2.2准颗粒生成和重组。。。。。。。。。24 2.2.3穿透深度和薄膜。。。。。。。。。。。。。。。30 2.2.4复杂的电导率:Mattis-Bardeen理论。。。。。。31 2.3微波谐振器和S-参数。。。。。。。。。。。。。。。37 2.3.1预序:微波网络和S-参数。。。37 2.3.2共振电路和质量因素。。。。。。。。。。。。。38 2.4动力电感探测器的原理。。。。。。。。。。。。。。43 2.4.1 MKID的表面阻抗。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 43 2.4.2响应性。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 44 2.4.3非线性和分叉。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 53 2.5灵敏度和噪声。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。43 2.4.1 MKID的表面阻抗。。。。。。。。。。。。。。。。。43 2.4.2响应性。。。。。。。。。。。。。。。。。。。。。。。。。。44 2.4.3非线性和分叉。。。。。。。。。。。。。。。。。。53 2.5灵敏度和噪声。。。。。。。。。。。。。。。。。。。。。。。。。。。56 2.5.1背景。。。。。。。。。。。。。。。。。。。。。。。。。。。57 2.5.2时间常数。。。。。。。。。。。。。。。。。。。。。。。。。59 2.5.3光子噪声。。。。。。。。。。。。。。。。。。。。。。。。。。61 2.5.4生成重组噪声。。。。。。。。。。。。。。62 2.5.5 tls噪声。。。。。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>63 2.6.6总NEP。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 64 div>63 2.6.6总NEP。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>64 div>
a b s t r a c t generativ e Adveranial网络(GAN)经常用于天文学中来构建数值模拟的模拟器。然而,培训甘斯可能会被证明是一项不稳定的任务,因为它们容易出现不稳定,并且经常导致模式崩溃问题。相反,扩散模型还具有在没有对抗训练的情况下生成高质量数据的能力。它在几个自然图像数据集方面表现出了优势。在这项研究中,我们通过一组来自散射变换的强大摘要统计数据进行了降级扩散概率模型(DDPM)(DDPM)(DDPM)(DDPM)(最坚固的gan类型之一)之间的定量比较。特别是,我们利用这两个模型来生成21 cm亮度温度映射的图像,作为一个案例研究,基于天体物理参数有条件地研究,这些参数与宇宙复离的过程相关。使用我们的新fr`echet散射距离(FSD)作为e v aluation指标,以定量比较生成模型和仿真之间的样本分布,我们证明了DDPM在各种训练集的大小上都优于stylegan2。通过Fisher的预测,我们证明,在我们的数据集中,StyleGAN 2以各种方式崩溃,而DDPM产生了更强大的生成。我们还探讨了无分类指导在DDPM中的作用,并仅在训练数据受到限制时才显示出对非零指导量表的偏好。我们的发现表明,扩散模型在生成准确的图像中提供了一种有希望的替代品。这些图像随后可以提供可靠的参数约束,尤其是在天体物理学领域。
虽然基于脉冲神经网络 (SNN) 的神经形态计算架构作为实现生物可信机器学习的途径越来越受到关注,但人们的注意力仍然集中在神经元和突触等计算单元上。从这种神经突触视角出发,本文试图探索神经胶质细胞,特别是星形胶质细胞的自我修复作用。这项工作调查了与星形胶质细胞计算神经科学模型的更强相关性,以开发具有更高生物保真度的宏观模型,准确捕捉自我修复过程的动态行为。硬件-软件协同设计分析表明,生物形态星形胶质细胞调节有可能自我修复神经形态硬件系统中的硬件实际故障,并且在 MNIST 和 F-MNIST 数据集上的无监督学习任务中具有明显更好的准确性和修复收敛性。我们的实现源代码和训练模型可在 https://github.com/NeuroCompLab-psu/Astromorphic Self Repair 上找到。
5 哈勃太空望远镜系统 5-1 5.1 支持系统模块 5-2 5.1.1 结构和机制子系统 5-2 5.1.2 仪器和通信子系统 5-7 5.1.3 数据管理子系统 5-8 5.1.4 指向控制子系统 5-10 5.1.5 电力子系统 5-14 5.1.6 热控制 5-16 5.1.7 安全(应急)系统 5-16 5.2 光学望远镜组件 5-18 5.2.1 主镜组件和球面像差 5-19 5.2.2 次镜组件 5-23 5.2.3 焦平面结构组件 5-24 5.2.4 OTA 设备部分 5-24 5.3 精细制导传感器 5-25 5.3.1 精细制导传感器组成和功能 5-25 5.3.2 铰接镜系统 5-27 5.4 太阳能电池阵列和抖动问题 5-27 5.4.1 配置 5-27 5.4.2 太阳能电池阵列子系统 5-28 5.4.3 维修任务 3A 的太阳能电池阵列配置 5-29 5.5 科学仪器控制和数据处理单元 5-29 5.5.1 组件 5-29 5.5.2 操作 5-30 5.6 空间支持设备 5-31 5.6.1 飞行支持系统 5-32 5.6.2 轨道替换单元运载器 5-33 5.6.3 机组辅助设备 5-35
一些最引人注目的天体物理问题,如加速宇宙膨胀或星系形成的暗能量的性质,在很大程度上依赖于获取大量光谱数据样本的可能性。十八世纪的天文学家设想了经典的客观棱镜法,即通过与望远镜孔径大小相同的棱镜对天体进行成像。该方法可产生天体中每个光源的光谱。它特别适合明亮的光源,因为它有几个缺点:1) 整个光谱上积分的整个天空背景落在每个像素上,增加了噪声; 2) 如果不同光源的光谱沿色散方向排列,则它们的光谱会重叠; 3) 由于没有狭缝,有效分辨率取决于天体的表观大小。尽管存在这些问题,客观棱镜光谱法仍然在使用,因为它很简单,因为它可以使用光栅添加到传统成像仪中,光栅是一种表面蚀刻有光栅的棱镜,可保持所选中心波长的光不偏离。由于与地面相比,天体背景较低,因此它对于太空应用特别方便。哈勃太空望远镜上的成像仪器通常配备一个或多个光栅。还提出了以客观棱镜模式进行全天空勘测的专用卫星。1
关于国家科学技术委员会 国家科学技术委员会 (NSTC) 是行政部门协调联邦研究和开发机构各实体间科学技术政策的主要手段。NSTC 的主要目标是确保科学技术政策决策和计划与总统的既定目标一致。NSTC 制定研究和开发战略,协调各联邦机构,以实现多项国家目标。NSTC 的工作由各委员会负责,这些委员会负责监督专注于科学技术不同方面的小组委员会和工作组。更多信息请访问 http://www.whitehouse.gov/ostp/nstc 。关于科学技术政策办公室 科学技术政策办公室 (OSTP) 是根据 1976 年《国家科学技术政策、组织和优先事项法》成立的,旨在为总统和总统行政办公室内的其他人员提供有关经济、国家安全、国土安全、卫生、外交关系、环境、资源的技术回收和利用等方面的科学、工程和技术方面的建议。OSTP 领导跨部门科学技术政策协调工作,协助管理和预算办公室每年审查和分析联邦预算中的研究和开发,并作为总统在联邦政府主要政策、计划和方案方面的科学和技术分析和判断的来源。更多信息请访问 http://www.whitehouse.gov/ostp。关于近地天体撞击威胁应急协议跨部门工作组 近地天体撞击威胁应急协议跨部门工作组 (IWG) (NITEP) 由空间天气、安全和危害小组委员会组织,该小组委员会是 NSTC 国土和国家安全委员会的一部分。NITEP 旨在协调行政部门和机构的活动,以实施国家近地天体 (NEO) 战略和行动计划中的选定行动,以加强 NEO 撞击应急程序和行动协议。 关于本文档 本文档由 NITEP IWG 制定,旨在协调实施国家近地天体战略和行动计划中与加强 NEO 撞击应急程序和协议有关的指定部分。本文档由空间天气、安全和危害小组委员会和国土和国家安全委员会审查,并由 OSTP 定稿并发布。本文档将在适当时进行审查和更新。版权信息 本文件是美国政府的作品,属于公共领域(见 17 USC§105)。本文件可在遵守以下规定的前提下分发和复制,但需注明来源为 OSTP。本文件中包含的图片版权归原版权持有人或其受让人所有,并根据政府许可和授权在此使用。使用任何图片的请求必须向图片来源中注明的提供者提出,如果未注明提供者,则向 OSTP 提出。2021 年在美国出版。