我们承认我们所居住和工作的传统所有者的悠久历史,并认识到他们与土地,海洋和社区的联系。捕获和通道水的山脉,天然湖泊和河流富含原住民历史,文化和传统。我们承认当前的托管人及其与文化的持续联系,以及我们共享的地方的土地和水域。我们对过去和现在的长者表示敬意,并将其扩展到当今所有原住民和托雷斯海峡岛民人民。
奥塔哥地区拥有丰富的淡水资源,包括地表水、天然湖、人工湖、地下水和湿地。奥塔哥的社区依靠这些水资源维持社会、文化和经济福祉。河流和湖泊构成了该地区地表水的大部分。瓦纳卡湖、瓦卡蒂普湖和哈威亚湖等大湖以及人工湖邓斯坦湖、罗克斯堡湖和昂斯洛湖等占新西兰湖泊总面积约 23% 的大型湖泊。主要集水区是瓦纳卡湖、瓦卡蒂普湖和哈威亚湖,这些湖汇入奥塔哥最大的河流克鲁萨河/马塔奥河。奥塔哥还有许多地下水源。湿地构成了奥塔哥许多重要的景观和生态系统元素,包括毯状沼泽和绳状沼泽、盐碱地、沼泽森林残余、浅湖群、河口盐沼和谷底沼泽。
引言和背景:理解火星气候发展中最重要的综合性之一是似乎高度矛盾的双重情景 - 诺阿西(Ln)(Ln)(Ln) - 过时的hesperian(eh)环境气候和历史(图。1)。是广泛的河谷网络(VN)及其经常相关的封闭式湖泊(CBL)和开放式湖泊(OBL)[1-3]的广泛案例和丰富的地理证据[1-3],并与高度的影响曲局和Landgrada-teisis compland/and and-semient and and and and and and and and and and and and and and Arifient and Ariend and Ariend and Ariend and Ariid a”气候”(WW模型)[5]具有平均年度温度(MAT)> 273K,并且降雨超过LN-EH中的Regolith引起径流并形成VN-CBL-OBL的渗透能力,然后再过渡到今天[6] [6]。另一方面,全局临床模型(GCM)指出了相对于今天(微弱的年轻太阳; fys)[7-9]的低太阳能死亡的重要性[7-9],并预测了MAT 〜225 K(图。1)和绝热冷却效果(ACE),导致高地中的雪和冰的沉积和保留[7-9]。在这些冷冰(CI)模型中,环境气候在水的273 K熔点下方48 K(图1),并且在没有某种瞬时因子的情况下显得稳定,以诱导IH和径流熔化以产生VN- OBL-CBL。
*hans.van.der.meer@kiwa.com介绍当前社会在防止进一步的全球变暖方面面临巨大挑战。为了提供可持续的未来新的可持续燃料,以减少化石燃料的使用。在实施新燃料之前,应评估其使用安全性。这需要对与这些新燃料接触的橡胶材料的抵抗力进行透彻的了解。在LPG行业中,重点是引入可再生二甲基醚(RDME)作为丙烷的(部分)替代。这项研究是通过使用RDME来评估橡胶材料的性能的。为此,选择了目前正在使用LPG应用中使用的橡胶材料。Kiwa技术在2021年和2022年进行的研究表明,与丙烷混合的RDME浓度增加会导致聚合物材料的体积变化增加。它还提出了一种测量体积变化的摄影方法。结论是,将RDME添加到LPG到达并包括20%RDME的浓度被认为是可能的。对低丙烯腈含量和FKM的NBR橡胶提出了一些担忧。世界液体气体协会(WLGA)要求荷兰Kiwa B.V.(Kiwa)在丙烷环境和20%二甲基醚(DME)的环境中测试基于聚合物的材料。丙烷中的测试被用作参考,以查看DME对液化石油气体(LPG)系统实际使用的一系列材料的影响。在以下气体的液相测试了橡胶材料:•丙烷; •混合20%二甲基醚和80%丙烷。为了收集有关这些橡胶材料的性能的更多信息,测试了以下参数的更改:•通过新的照相方法更改音量; •批量提取; •机械性能。体积变化提供了有关测试橡胶材料的吸收现象的信息。使用曝光后快速捕获体积变化的一种新的照相方法。这种新方法的原理在2024年的新版本ISO 1817中采用。
● 《营养学》杂志的一项研究发现,Sukre 可降低餐后血糖水平。● 《临床生物化学与营养学杂志》的一项随机对照试验表明,匙羹藤可降低血糖水平。● 《糖尿病技术与治疗学》的一项荟萃分析发现,铬可改善血糖控制。● 《家庭医学年鉴》报道,肉桂可降低空腹血糖水平。
众所周知,微生物在海绵中占丰富,占宿主生物量的50%-60%。越来越多的证据表明,与海绵相关的细菌,真菌和蓝细菌都是从海绵中鉴定出的生物活性化合物的真正创造者。发现从1998年到2017年发现774种结构活性化合物,对海绵相关微生物的天然产品资源进行了很好的概述。During the last 5 years, many new molecules, including peptides, polyketides, alkaloids, and terpenes, have been identi fi ed from sponge-associated microorganisms through various mining strategies, exhibiting a wide range of biological activities, such as anti-microbial, anti-cancer, enzyme inhibition, and antioxidant properties.In this paper, 140 compounds produced by sponge-associated microorganisms from 2017 to 2022 are systematically discussed in terms of their structures, biological activities, and strain sources, as well as the mining strategies, which not only further updates the natural product library of sponge-associated microorganisms but also provides a new guideline for exploring the “ dark matter ” in sponges.
锂供应安全已成为亚洲,欧洲和北美技术公司的重中之重。技术公司和勘探公司之间的战略联盟和合资企业继续成立,以确保为电池供应商和车辆制造商提供可靠,多元化的锂供应。基于盐水的锂来源处于阿根廷,玻利维亚,加拿大,智利,中国和美国的发展或勘探的各个阶段;基于矿物质的锂来源处于澳大利亚,奥地利,巴西,加拿大,中国,刚果,刚果(金沙萨),捷克西亚,埃塞俄比亚,法国,德国,德国,加纳,印度,印度,伊朗,哈萨克斯坦,哈萨克斯坦,马里,马里,纳米亚,尼日利亚,尼日利亚,北方,佛罗里达州,俄罗斯,俄罗斯,俄罗斯,俄罗斯,俄罗斯,俄罗斯,俄罗斯,俄罗斯,俄罗斯,俄罗斯,俄罗斯,俄罗斯,俄罗斯,俄罗斯,俄罗斯,鲁道德国家和津巴布韦;在墨西哥和美国,锂粘土来源处于发展或勘探的各个阶段。
目的:第一个目标是摆脱废物并减少环境污染,另一个目标是研究这些纤维对聚酯性能(复合材料的弯曲和拉伸试验阻力)的影响并将其用于应用。此外,还研究了湿度环境对复合材料性能的影响。设计/方法/方法:使用天然纤维,即被视为废物的蛋壳和锯末与聚酯。制备了几个不同重量百分比(30%和40%)的样品,研究了它们的机械性能,并将其浸泡在水中15天。并研究水对这些性能的影响。研究发现,可以将这些纤维(废物)与聚酯一起使用并从中受益。研究发现,当向聚酯中添加纤维时,拉伸强度会降低,但弯曲会增加强度。最后,研究发现,当将样品浸入水中时,材料会变弱,其机械性能会下降。发现:可以注意到,添加 40% 和 30% 的天然纤维可以改善聚酯在弯曲试验中的机械性能,其中弯曲试验随着纤维体积分数的增加而增加。可以注意到,添加 40% 和 30% 的天然纤维会降低聚酯在拉伸试验中的机械性能(拉伸强度)。当用水处理天然复合材料 15 天时,水会降低弯曲和拉伸试验的机械性能。研究的局限性/含义:通过工作发现本研究的局限性之一是,增加添加到聚酯中的纤维的重量比会导致聚酯失效,因此我们建议使用较低重量比的纤维。实际意义:通过工作发现本研究的局限性之一是,增加添加到聚酯中的纤维的重量比会导致聚酯失效,因此我们建议使用较低重量比的纤维。原创性/价值:这项研究的原创价值在于利用被视为废物的纤维,重新利用它们,并利用在某些不需要高机械性能复合材料的应用中。关键词:聚酯树脂、复合天然材料、拉伸和弯曲试验对本文的引用应以以下方式给出:AA Nayeeif、ZK Hamdan、ZW Metteb、FA Abdulla、NA Jebur,天然填料基复合材料,材料科学与工程档案 116/1 (2022) 5-13。DOI:https://doi.org/10.5604/01.3001.0016.0972
人工智能 (AI) 具有改变药物发现的潜力。在过去的几年中,通过技术进步,人工智能驱动的药物发现取得了长足的发展,例如使用神经网络设计分子和应用知识图谱来了解靶标生物学。几家人工智能原生药物发现公司已将分子推进至临床试验阶段,在某些情况下报告称大大加快了时间表并降低了成本,这引起了研发界的高度期待。此外,许多老牌制药公司已与人工智能公司建立了发现合作伙伴关系,以探索该技术。尽管取得了这些进展,但人工智能在药物发现领域仍处于早期阶段,关于其影响和未来潜力仍有许多悬而未决的问题。我们看到人工智能在药物发现中创造价值的几个方面,包括更高的生产力(更快的速度和/或更低的成本)、更广泛的分子多样性和更高的临床成功率。在这里,我们使用公开数据对人工智能在这些方面的影响进行了分析。我们主要关注小分子药物的研发,该领域的人工智能方法相对更为成熟。