轨道碎片是指任何绕地球运行的人造太空物体,不再具有任何有用的用途 [1]。轨道碎片对所有太空任务都构成威胁,包括情报界 (IC) 的任务。低地球轨道 (LEO) 的平均撞击速度为 22,500 MPH,即使是最小的碎片也会造成严重损害,0.2 毫米的油漆碎片撞击 STS-71 时产生的直径为 3.8 毫米的坑洞就是明证 [2]。目前,有超过 1 亿个大于 1 毫米的物体绕地球运行,[3, 4] 但据估计,目前追踪到的可能造成任务终止损害的碎片不到 1% [5]。此外,由于近地空间环境的动态和多变性,预测碎片的轨迹极其困难,需要持续监测 [6]。虽然目前可以探测和追踪大于 10 厘米的碎片,但目前的能力不足以追踪较小的碎片 [7]。太小而无法追踪的碎片通常被称为“致命的不可追踪碎片”(LNT),[8] 会对航天器造成严重损害,甚至危及太空任务。探测、跟踪和表征 LNT 碎片将有助于全球宝贵太空资产的更安全运行 [9]。
光子图态的生成主要有两种方法:概率法和确定性法。在概率法情况下,使用线性光学、探测器和后选择实现的融合门 [12、13],从小的纠缠态构建图态。然而,考虑到融合的概率性质,所需资源会随着图态大小呈指数增长 [14]。另一方面,确定性方法利用发射体(如量子点、捕获离子或金刚石中的氮空位中心 [15])之间的纠缠操作,直接生成图态,而无需概率融合。最近使用此类架构进行的实验演示 [ 16 ] 已达到令人印象深刻的里程碑,例如,生成 10 量子比特线性簇状态 [ 17 , 18 ] 和 14 量子比特 Greenberger–Horne–Zeilinger (GHZ) 状态 [ 19 ]。还有各种基于量子发射器的方法的理论提案,用于生成二维图状态 [ 15 , 20 – 22 ]。由于量子发射器相干时间的限制及其耦合方面的挑战,通过此类方法生成的图状态仍然太小,无法用于许多实际应用。
寻找一种可行的方案来测试引力相互作用的量子力学性质引起了越来越多的关注。到目前为止,引力介导的纠缠产生似乎是潜在实验的关键因素。在最近的一项提案 [D. Carney 等人,PRX Quantum 2,030330 (2021)] 中,将原子干涉仪与低频机械振荡器相结合,提出了一种相干性复兴测试来验证这种纠缠产生。由于只对原子进行测量,因此该协议无需进行相关测量。在这里,我们探索了这种协议的公式,并具体发现,在设想的高热激发操作状态下,没有纠缠概念的半经典模型也会给出相同的实验特征。我们在完全量子力学计算中阐明,纠缠不是相关参数范围内复兴的来源。我们认为,在目前的形式下,建议的测试仅在振荡器几乎处于纯量子态时才有意义,并且在这种情况下,影响太小而无法测量。我们进一步讨论了潜在的开放结局。结果强调了在测试物理系统的量子力学性质时明确考虑量子情况与经典期望的不同之处的重要性和微妙之处。
Park Aerospace Corp.开发和制造解决方案和热融化的高级复合材料,用于为全球航空航天市场生产复合结构。Park提供了一系列专门为手工铺铺或自动化纤维放置(AFP)制造应用而设计的复合材料。Park的先进复合材料用于生产喷气发动机,大型和区域运输飞机,军用飞机,无人驾驶飞机(通常称为“无人机”),商务喷气机,通用航空飞机和旋转翼飞机的初级和二级结构。Park还提供了用于火箭电动机和喷嘴的特种烧烤材料,以及用于Radome应用的专门设计的材料。作为Park先进的复合材料提供,公园设计和制造复合零件,结构和组件以及航空航天行业低容量工具的补充。Park复合零件和结构的目标市场(包括Park的专利复合Sigma Strut和Alpha Strut产品线),包括原型和开发飞机,特殊的任务飞机,传统军用飞机和民用飞机的备件以及奇异的航天器。公园的目标是做别人不愿或无法做的事情。当没有其他人愿意这样做是因为它太难,太小或太烦人了,请注册我们。
初创企业通过开发更大的玩家认为太冒险的新技术或针对新兴市场最初太小而无法考虑大型公司来考虑的新技术,在促进清洁能源创新方面发挥着关键作用。电动汽车的兴起提供了一个鲜明的例子:2013年,特斯拉推出该模型S的那一年,只有约0.3%的全球乘用车电动汽车被电气化,并且累计宣布的EV投资在全球范围内不到100亿美元。8到2022年底,全球销售的乘用车中有14%是电动的,大型汽车制造商已将累计的EV投资宣布为8600亿美元。9特斯拉的盈利之旅漫长而艰难:该公司必须从私人投资者,公共投资者和政府贷款中筹集约140亿美元,然后在成立16年后最终获得正现金流量。10以联邦贷款形式的直接联邦支持从成立到2019年的特斯拉总资金占约3%,但是当私人资助者不太愿意投资时,在2008年金融危机之后,在特斯拉的增长旅程中,这笔资金是在特斯拉的增长旅程中的关键时期。
摘要 采用综合系统动力学模型 WORLD6 评估不锈钢对社会的长期供应,同时考虑可提取的原材料量。这是同时处理四种金属(铁、铬、锰、镍)的结果。考虑到合金金属锰、铬和镍的供应,我们评估了可以根据需求生产的不锈钢数量以及生产时间。可提取的镍量很少,这限制了可以生产多少不同质量的不锈钢。模拟表明,镍是不锈钢生产的关键元素,稀缺性问题取决于镍供应和回收系统的管理程度。研究表明,不锈钢产量很可能在 2055 年左右达到最大产能,然后缓慢下降。该模型表明,含锰-铬-镍类型的不锈钢将在 2040 年左右达到产量峰值,由于镍供应限制,产量将在 2045 年后下降。钴、钼、钽或钒等金属的产量太小,无法替代缺失的镍。这些金属本身作为超级合金和特种钢以及其他技术应用的重要成分是有限的。由于稀缺性,不锈钢价格上涨,我们预计回收率会上升,并在一定程度上缓解下降趋势。在回收率超过 80% 的情况下,镍、铬和锰的供应将足够几个世纪。
2023/1542 Energizer出售的所有电池都符合欧洲电池监管(2023/1542),涉及废料电池和累加器。欧洲电池法规(2023/1542)要求对电池的构建进行测试,以包括重金属。不需要每年重新重金属的电池。因此,Energizer对每个电池进行测试一次,并在进行内部施工进行更改时进行重新测试。有时,电池标签的设计可能会改变,而内部结构没有变化。电池标签的变化仅不会影响遵守欧洲电池法规(2023/1542),因此不需要重新测试。Energizer提供的原始设备制造商(OEM)电池在全球符合欧洲电池法规(2023/1542)的适当标记,只要它们是AAA(LR03)或更大。电池小于AAA(LR03)太小,并且没有足够的表面积来打印适当的标记。在这些情况下,标记应显示在设备的说明手册中。记录的进口商需要在欧盟成员国进行,必须在当地收集和回收组织(CRO)注册为生产者,并为进口到会员国的每个电池支付费用。请将问题推荐给您的授权Energizer经销商。2024年7月的Energizer
Park Aerospace Corp.开发和制造解决方案和热融化的高级复合材料,用于为全球航空航天市场生产复合结构。Park的先进复合材料包括胶片粘合剂(享有资格)和雷击材料。Park提供了一系列专门为手工铺铺或自动化纤维放置(AFP)制造应用而设计的复合材料。Park的先进复合材料用于生产喷气发动机,大型和区域运输飞机,军用飞机,无人驾驶飞机(通常称为“无人机”),商务喷气机,通用航空飞机和旋转翼飞机的初级和二级结构。Park还提供了用于火箭电动机和喷嘴的特种烧烤材料,以及用于Radome应用的专门设计的材料。作为Park先进的复合材料提供,公园设计和制造复合零件,结构和组件以及航空航天行业低容量工具的补充。Park复合零件和结构的目标市场(包括Park的专有复合材料Sigma Strut和Alpha Strut产品线),包括原型和开发飞机,特殊的任务飞机,遗产军用和平民飞机的备用备件,以及奇特的飞船。公园的目标是做别人不愿或无法做的事情。当没有其他人愿意这样做是因为它太难,太小或太烦人了,请注册我们。
我已从疾病控制和预防中心获得一份疫苗信息声明,其中解释了每种免疫接种及其预防的疾病。我已经与孩子的儿科医生或其他医疗保健提供者讨论了该建议以及我拒绝接种的原因。他们回答了我关于推荐免疫接种的所有问题。我知道可以在 https://www.cdc.gov/vaccines/parents/FAQs.html 找到更多信息。我了解以下内容: 已勾选的免疫接种是由我孩子的儿科医生或医疗保健提供者、美国儿科学会、美国家庭医生学会和疾病控制和预防中心推荐的。 已勾选的推荐免疫接种的益处和风险。 如果我的孩子没有按照标准的、基于证据的时间表接种疫苗,其后果可能包括: - 感染免疫接种旨在预防的疾病,这可能会导致表中所列的严重并发症。 - 将疾病传染给他人(包括那些太小而不能接种疫苗的人或有免疫问题的人),可能需要我的孩子不能去托儿所或学校,并且需要有人在疾病爆发期间请假在家照顾我的孩子。 一些可通过免疫预防的疾病在其他国家很常见。我未接种疫苗的孩子可能会在旅行时或从前往其他国家旅行的人那里感染这些疾病之一。
因突变或翻译后修饰 (PTM) 而产生的替代蛋白质-蛋白质相互作用 (PPI),称为表型转换 (PS),对于替代致病信号的传递至关重要,在癌症中尤其重要。近年来,PPI 已成为合理药物设计的有希望的靶标,主要是因为它们的高特异性有助于靶向与疾病相关的信号通路。然而,在分子水平上存在障碍,这些障碍源于相互作用界面的性质以及小分子药物与多个裂隙表面相互作用的倾向。难以识别可作为激活剂或抑制剂来抵消突变的生物学效应的小分子,这引发了以前从未遇到过的问题。例如,小分子可以紧密结合,但可能不能作为药物或结合到多个位点(相互作用混乱)。另一个原因是蛋白质表面没有明显的裂隙;如果存在口袋,它可能太小,或者其几何形状可能阻碍结合。 PS 源自致癌(替代)信号传导,可导致耐药性并构成肿瘤系统稳定性的基础。本综述研究了与靶向药物设计和开发相关的 PPI 界面特性。此外,还讨论了用作药物的三种酪氨酸激酶抑制剂 (TKI) 之间的相互作用。最后,通过计算机模拟确定了其中一种药物的潜在新靶点。
